Rahul Nadda , Diganta Bhusan Das , Tahir Emre Yalcin , Abraham M. Abraham , Eneko Larrañeta , Ryan F. Donnelly
{"title":"空心锥体微针的插拔动力学:实验与数值模拟","authors":"Rahul Nadda , Diganta Bhusan Das , Tahir Emre Yalcin , Abraham M. Abraham , Eneko Larrañeta , Ryan F. Donnelly","doi":"10.1016/j.ijpharm.2025.125989","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aimed to investigate the dynamics of HMNs’ insertion and extraction utilising HMN fabrication, laboratory experiments and numerical simulations. In particular, the study aims to develop an experimentally validated mathematical model to investigate the mechanics of the insertion and extraction of hollow pyramidal MNs, considering the nonlinear material behaviour of HMNs and skin. This study reveals good consistency between the experimental and computational results, providing confidence on the validity of the developed mathematical model. The model was then used to conduct detailed numerical simulations of the insertion and extraction of hollow pyramidal MN within a multi-layered skin model under different conditions, allowing us to assess the impacts of several key parameters (e.g., the base radius, length, and tip radius of HMNs) on the insertion and extractions dynamics of the HMNs. Overall, the findings of this paper indicate that HMN length <600 µm, base diameter <300 µm, tip diameter <30 µm, needle spacing >800 µm, and number of HMNs <9 can significantly lower the forces required for insertion and extraction for the chosen pyramidal MN, while maintaining their mechanical and structural integrity.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"682 ","pages":"Article 125989"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of insertion and extraction of hollow pyramidal microneedles: experiments and numerical modelling\",\"authors\":\"Rahul Nadda , Diganta Bhusan Das , Tahir Emre Yalcin , Abraham M. Abraham , Eneko Larrañeta , Ryan F. Donnelly\",\"doi\":\"10.1016/j.ijpharm.2025.125989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study aimed to investigate the dynamics of HMNs’ insertion and extraction utilising HMN fabrication, laboratory experiments and numerical simulations. In particular, the study aims to develop an experimentally validated mathematical model to investigate the mechanics of the insertion and extraction of hollow pyramidal MNs, considering the nonlinear material behaviour of HMNs and skin. This study reveals good consistency between the experimental and computational results, providing confidence on the validity of the developed mathematical model. The model was then used to conduct detailed numerical simulations of the insertion and extraction of hollow pyramidal MN within a multi-layered skin model under different conditions, allowing us to assess the impacts of several key parameters (e.g., the base radius, length, and tip radius of HMNs) on the insertion and extractions dynamics of the HMNs. Overall, the findings of this paper indicate that HMN length <600 µm, base diameter <300 µm, tip diameter <30 µm, needle spacing >800 µm, and number of HMNs <9 can significantly lower the forces required for insertion and extraction for the chosen pyramidal MN, while maintaining their mechanical and structural integrity.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"682 \",\"pages\":\"Article 125989\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517325008269\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325008269","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dynamics of insertion and extraction of hollow pyramidal microneedles: experiments and numerical modelling
The present study aimed to investigate the dynamics of HMNs’ insertion and extraction utilising HMN fabrication, laboratory experiments and numerical simulations. In particular, the study aims to develop an experimentally validated mathematical model to investigate the mechanics of the insertion and extraction of hollow pyramidal MNs, considering the nonlinear material behaviour of HMNs and skin. This study reveals good consistency between the experimental and computational results, providing confidence on the validity of the developed mathematical model. The model was then used to conduct detailed numerical simulations of the insertion and extraction of hollow pyramidal MN within a multi-layered skin model under different conditions, allowing us to assess the impacts of several key parameters (e.g., the base radius, length, and tip radius of HMNs) on the insertion and extractions dynamics of the HMNs. Overall, the findings of this paper indicate that HMN length <600 µm, base diameter <300 µm, tip diameter <30 µm, needle spacing >800 µm, and number of HMNs <9 can significantly lower the forces required for insertion and extraction for the chosen pyramidal MN, while maintaining their mechanical and structural integrity.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.