最小嵌入链切分割k-ary n-立方体

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yuxing Yang, Kaiyue Meng
{"title":"最小嵌入链切分割k-ary n-立方体","authors":"Yuxing Yang,&nbsp;Kaiyue Meng","doi":"10.1016/j.dam.2025.07.031","DOIUrl":null,"url":null,"abstract":"<div><div>Given two integers <span><math><mi>n</mi></math></span> and <span><math><mi>t</mi></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi></mrow></math></span>, a <span><math><mi>t</mi></math></span>-<em>embedded-link-cut</em> of an <span><math><mi>n</mi></math></span>-dimensional recursive interconnection network <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a set of links whose removal separates <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and each node still lies in a <span><math><mi>t</mi></math></span>-dimensional subnetwork <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> in the resulting network. A <em>minimum embedded-link-cut split</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the resultant network obtained by removing all the links in a minimum embedded-link-cut from <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. And <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is said to be <em>super</em> <span><math><mi>t</mi></math></span><em>-embedded link connected</em> (super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) if each minimum embedded-link-cut split <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has exactly two components, one of which is isomorphic to <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary <span><math><mi>n</mi></math></span>-cube) as a special case. Let <span><math><mi>ν</mi></math></span> be the number of nodes in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>. In this paper, we provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ν</mi><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> algorithm to obtain a minimum <span><math><mi>t</mi></math></span>-embedded-link-cut for <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cubes with <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> or odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, and prove that both the binary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and the ternary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, but the <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube with odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> is not super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 210-215"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum embedded-link-cut split k-ary n-cubes\",\"authors\":\"Yuxing Yang,&nbsp;Kaiyue Meng\",\"doi\":\"10.1016/j.dam.2025.07.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given two integers <span><math><mi>n</mi></math></span> and <span><math><mi>t</mi></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>&lt;</mo><mi>n</mi></mrow></math></span>, a <span><math><mi>t</mi></math></span>-<em>embedded-link-cut</em> of an <span><math><mi>n</mi></math></span>-dimensional recursive interconnection network <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a set of links whose removal separates <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and each node still lies in a <span><math><mi>t</mi></math></span>-dimensional subnetwork <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> in the resulting network. A <em>minimum embedded-link-cut split</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the resultant network obtained by removing all the links in a minimum embedded-link-cut from <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. And <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is said to be <em>super</em> <span><math><mi>t</mi></math></span><em>-embedded link connected</em> (super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) if each minimum embedded-link-cut split <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has exactly two components, one of which is isomorphic to <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary <span><math><mi>n</mi></math></span>-cube) as a special case. Let <span><math><mi>ν</mi></math></span> be the number of nodes in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>. In this paper, we provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ν</mi><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> algorithm to obtain a minimum <span><math><mi>t</mi></math></span>-embedded-link-cut for <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cubes with <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> or odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, and prove that both the binary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and the ternary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, but the <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube with odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> is not super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 210-215\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004214\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定两个0≤t<;n的整数n和t, n维递归互连网络Nn的t嵌入链路切割是一组链路,它们的移除将Nn分开,而每个节点仍然位于生成的网络的t维子网络Nt中。最小嵌入链路切割分割Nn是将最小嵌入链路切割中的所有链路从Nn中移除而得到的网络。如果每个最小嵌入链路切割分割Nn恰好有两个分量,其中一个分量与Nt同构,则称Nn为超t嵌入链路连接(super-ηt)。k元n立方体Qnk是多处理器系统的领先互连网络,它以超立方体(即二元n立方体)为特例。设ν为Qnk中的节点数。本文给出了一种O(ν⋅(n−t))算法来求k=2或奇数k≥3的k-ary n-立方体的最小t嵌入链切,并证明了n≥3的二元n-立方体和n≥1的三元n-立方体在0≤t≤n - 1时都是超ηt,但奇数k≥5的k-ary n-立方体不是超ηn - 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum embedded-link-cut split k-ary n-cubes
Given two integers n and t with 0t<n, a t-embedded-link-cut of an n-dimensional recursive interconnection network Nn is a set of links whose removal separates Nn and each node still lies in a t-dimensional subnetwork Nt in the resulting network. A minimum embedded-link-cut split Nn is the resultant network obtained by removing all the links in a minimum embedded-link-cut from Nn. And Nn is said to be super t-embedded link connected (super-ηt) if each minimum embedded-link-cut split Nn has exactly two components, one of which is isomorphic to Nt. The k-ary n-cube Qnk is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary n-cube) as a special case. Let ν be the number of nodes in Qnk. In this paper, we provide an O(ν(nt)) algorithm to obtain a minimum t-embedded-link-cut for k-ary n-cubes with k=2 or odd k3, and prove that both the binary n-cube with n3 and the ternary n-cube with n1 are super-ηt for 0tn1, but the k-ary n-cube with odd k5 is not super-ηn1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信