{"title":"最小嵌入链切分割k-ary n-立方体","authors":"Yuxing Yang, Kaiyue Meng","doi":"10.1016/j.dam.2025.07.031","DOIUrl":null,"url":null,"abstract":"<div><div>Given two integers <span><math><mi>n</mi></math></span> and <span><math><mi>t</mi></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi>n</mi></mrow></math></span>, a <span><math><mi>t</mi></math></span>-<em>embedded-link-cut</em> of an <span><math><mi>n</mi></math></span>-dimensional recursive interconnection network <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a set of links whose removal separates <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and each node still lies in a <span><math><mi>t</mi></math></span>-dimensional subnetwork <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> in the resulting network. A <em>minimum embedded-link-cut split</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the resultant network obtained by removing all the links in a minimum embedded-link-cut from <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. And <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is said to be <em>super</em> <span><math><mi>t</mi></math></span><em>-embedded link connected</em> (super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) if each minimum embedded-link-cut split <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has exactly two components, one of which is isomorphic to <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary <span><math><mi>n</mi></math></span>-cube) as a special case. Let <span><math><mi>ν</mi></math></span> be the number of nodes in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>. In this paper, we provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ν</mi><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> algorithm to obtain a minimum <span><math><mi>t</mi></math></span>-embedded-link-cut for <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cubes with <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> or odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, and prove that both the binary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and the ternary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, but the <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube with odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> is not super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 210-215"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum embedded-link-cut split k-ary n-cubes\",\"authors\":\"Yuxing Yang, Kaiyue Meng\",\"doi\":\"10.1016/j.dam.2025.07.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given two integers <span><math><mi>n</mi></math></span> and <span><math><mi>t</mi></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi>n</mi></mrow></math></span>, a <span><math><mi>t</mi></math></span>-<em>embedded-link-cut</em> of an <span><math><mi>n</mi></math></span>-dimensional recursive interconnection network <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a set of links whose removal separates <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and each node still lies in a <span><math><mi>t</mi></math></span>-dimensional subnetwork <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> in the resulting network. A <em>minimum embedded-link-cut split</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the resultant network obtained by removing all the links in a minimum embedded-link-cut from <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. And <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is said to be <em>super</em> <span><math><mi>t</mi></math></span><em>-embedded link connected</em> (super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) if each minimum embedded-link-cut split <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has exactly two components, one of which is isomorphic to <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary <span><math><mi>n</mi></math></span>-cube) as a special case. Let <span><math><mi>ν</mi></math></span> be the number of nodes in <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>. In this paper, we provide an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ν</mi><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> algorithm to obtain a minimum <span><math><mi>t</mi></math></span>-embedded-link-cut for <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cubes with <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> or odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, and prove that both the binary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and the ternary <span><math><mi>n</mi></math></span>-cube with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, but the <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube with odd <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> is not super-<span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 210-215\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004214\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004214","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Given two integers and with , a -embedded-link-cut of an -dimensional recursive interconnection network is a set of links whose removal separates and each node still lies in a -dimensional subnetwork in the resulting network. A minimum embedded-link-cut split is the resultant network obtained by removing all the links in a minimum embedded-link-cut from . And is said to be super-embedded link connected (super-) if each minimum embedded-link-cut split has exactly two components, one of which is isomorphic to . The -ary -cube is a leading interconnection network for the multiprocessor system, which takes the hypercube (i.e., the binary -cube) as a special case. Let be the number of nodes in . In this paper, we provide an algorithm to obtain a minimum -embedded-link-cut for -ary -cubes with or odd , and prove that both the binary -cube with and the ternary -cube with are super- for , but the -ary -cube with odd is not super-.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.