{"title":"图的无符号拉普拉斯能量和谱半径","authors":"Yuanyuan Chen , Shuting Liu , Zhiwen Wang","doi":"10.1016/j.dam.2025.07.015","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, the signless Laplacian energy is defined as <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>, where <span><math><mi>n</mi></math></span> and <span><math><mi>m</mi></math></span> are the order and the size, and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the <span><math><mi>i</mi></math></span>th largest signless Laplacian eigenvalue of <span><math><mi>G</mi></math></span>, respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph <span><math><mi>G</mi></math></span> in terms of the degree and the average 2-degree, generalizing a well-known lower bound that <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 216-225"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signless Laplacian energy and spectral radius of a graph\",\"authors\":\"Yuanyuan Chen , Shuting Liu , Zhiwen Wang\",\"doi\":\"10.1016/j.dam.2025.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mi>G</mi></math></span>, the signless Laplacian energy is defined as <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>, where <span><math><mi>n</mi></math></span> and <span><math><mi>m</mi></math></span> are the order and the size, and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the <span><math><mi>i</mi></math></span>th largest signless Laplacian eigenvalue of <span><math><mi>G</mi></math></span>, respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph <span><math><mi>G</mi></math></span> in terms of the degree and the average 2-degree, generalizing a well-known lower bound that <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 216-225\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Signless Laplacian energy and spectral radius of a graph
For a graph , the signless Laplacian energy is defined as , where and are the order and the size, and is the th largest signless Laplacian eigenvalue of , respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph in terms of the degree and the average 2-degree, generalizing a well-known lower bound that . As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.