基于二维卷积神经网络的非洲沙漠化遥感监测端到端管道

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Farah Chouikhi , Ali Ben Abbes , Imed Riadh Farah
{"title":"基于二维卷积神经网络的非洲沙漠化遥感监测端到端管道","authors":"Farah Chouikhi ,&nbsp;Ali Ben Abbes ,&nbsp;Imed Riadh Farah","doi":"10.1016/j.envsoft.2025.106622","DOIUrl":null,"url":null,"abstract":"<div><div>Desertification is a major environmental challenge in Africa, influenced by climate change, deforestation, and unsustainable land use. Effective monitoring is crucial for sustainable land management. This paper presents an end-to-end pipeline based on a Two-Dimensional Convolutional Neural Network (2D-CNN), achieving a classification accuracy of over 91% across a dataset derived from MODIS imagery collected over Africa between 2015 and 2023. The pipeline encompasses data acquisition, preprocessing, model development, evaluation, and prediction, facilitating large-scale desertification sensitivity analysis. The model’s performance was rigorously assessed using multiple metrics, including precision (90%), recall (89%), F1-score (89.5%), balanced accuracy (74.32%), and Matthews Correlation Coefficient (MCC) (0.86). Our proposed 2D-CNN consistently outperforms traditional machine learning models, including Random Forest (RF), XGBoost, Recurrent Neural Network (RNN), and Variational Autoencoder (VAE), demonstrating superior classification performance. The analysis reveals significant desertification expansion in the Sahel and Southern Africa regions, emphasizing the urgency for proactive intervention strategies.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106622"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An end-to-end pipeline based on a Two-Dimensional Convolutional Neural Network for monitoring desertification in Africa using remote sensing images\",\"authors\":\"Farah Chouikhi ,&nbsp;Ali Ben Abbes ,&nbsp;Imed Riadh Farah\",\"doi\":\"10.1016/j.envsoft.2025.106622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Desertification is a major environmental challenge in Africa, influenced by climate change, deforestation, and unsustainable land use. Effective monitoring is crucial for sustainable land management. This paper presents an end-to-end pipeline based on a Two-Dimensional Convolutional Neural Network (2D-CNN), achieving a classification accuracy of over 91% across a dataset derived from MODIS imagery collected over Africa between 2015 and 2023. The pipeline encompasses data acquisition, preprocessing, model development, evaluation, and prediction, facilitating large-scale desertification sensitivity analysis. The model’s performance was rigorously assessed using multiple metrics, including precision (90%), recall (89%), F1-score (89.5%), balanced accuracy (74.32%), and Matthews Correlation Coefficient (MCC) (0.86). Our proposed 2D-CNN consistently outperforms traditional machine learning models, including Random Forest (RF), XGBoost, Recurrent Neural Network (RNN), and Variational Autoencoder (VAE), demonstrating superior classification performance. The analysis reveals significant desertification expansion in the Sahel and Southern Africa regions, emphasizing the urgency for proactive intervention strategies.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106622\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003068\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003068","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

荒漠化是非洲面临的一个重大环境挑战,受到气候变化、森林砍伐和不可持续土地利用的影响。有效监测对可持续土地管理至关重要。本文提出了一种基于二维卷积神经网络(2D-CNN)的端到端管道,在2015年至2023年收集的非洲MODIS图像数据集上实现了超过91%的分类准确率。该管道包括数据采集、预处理、模型开发、评价和预测,便于大规模的荒漠化敏感性分析。使用多个指标对模型的性能进行严格评估,包括准确率(90%)、召回率(89%)、f1得分(89.5%)、平衡准确率(74.32%)和马修斯相关系数(MCC)(0.86)。我们提出的2D-CNN持续优于传统的机器学习模型,包括随机森林(RF), XGBoost,循环神经网络(RNN)和变分自编码器(VAE),展示了优越的分类性能。分析显示,萨赫勒和南部非洲地区的荒漠化严重扩大,强调了采取主动干预战略的紧迫性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An end-to-end pipeline based on a Two-Dimensional Convolutional Neural Network for monitoring desertification in Africa using remote sensing images
Desertification is a major environmental challenge in Africa, influenced by climate change, deforestation, and unsustainable land use. Effective monitoring is crucial for sustainable land management. This paper presents an end-to-end pipeline based on a Two-Dimensional Convolutional Neural Network (2D-CNN), achieving a classification accuracy of over 91% across a dataset derived from MODIS imagery collected over Africa between 2015 and 2023. The pipeline encompasses data acquisition, preprocessing, model development, evaluation, and prediction, facilitating large-scale desertification sensitivity analysis. The model’s performance was rigorously assessed using multiple metrics, including precision (90%), recall (89%), F1-score (89.5%), balanced accuracy (74.32%), and Matthews Correlation Coefficient (MCC) (0.86). Our proposed 2D-CNN consistently outperforms traditional machine learning models, including Random Forest (RF), XGBoost, Recurrent Neural Network (RNN), and Variational Autoencoder (VAE), demonstrating superior classification performance. The analysis reveals significant desertification expansion in the Sahel and Southern Africa regions, emphasizing the urgency for proactive intervention strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信