非线性和双退化椭圆型问题的平衡通量、后验误差估计和自适应

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Elyes Ahmed , Saber Amdouni
{"title":"非线性和双退化椭圆型问题的平衡通量、后验误差估计和自适应","authors":"Elyes Ahmed ,&nbsp;Saber Amdouni","doi":"10.1016/j.camwa.2025.07.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we establish a posteriori error analysis for a class of nonlinear and doubly degenerate elliptic equations, including the Stefan problem and both fast and slow diffusion in porous media. Our analysis leverages equilibrated flux reconstructions, yielding guaranteed and fully computable upper bounds on an energy-type error norm with local efficiency. These bounds are fully computable and robust, remaining unaffected by the degree of nonlinearity and degeneracy. The proposed estimators steer an adaptive solver that dynamically switches between nonlinear solvers to optimize iterations. The adaptive algorithm addresses discretization, regularization, and linearization errors. When Newton's method encounters convergence failures, the algorithm adaptively switches to the L-scheme solver. This solver precomputes the stabilization parameter <span><math><mi>L</mi><mo>&gt;</mo><mn>0</mn></math></span> in an offline phase to approximate the Jacobian. The efficiency of the adaptive algorithm is demonstrated through four prototypical examples, showcasing its effective error control and significant computational savings.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 239-264"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibrated flux a posteriori error estimates and adaptivity for nonlinear and doubly degenerate elliptic problems\",\"authors\":\"Elyes Ahmed ,&nbsp;Saber Amdouni\",\"doi\":\"10.1016/j.camwa.2025.07.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we establish a posteriori error analysis for a class of nonlinear and doubly degenerate elliptic equations, including the Stefan problem and both fast and slow diffusion in porous media. Our analysis leverages equilibrated flux reconstructions, yielding guaranteed and fully computable upper bounds on an energy-type error norm with local efficiency. These bounds are fully computable and robust, remaining unaffected by the degree of nonlinearity and degeneracy. The proposed estimators steer an adaptive solver that dynamically switches between nonlinear solvers to optimize iterations. The adaptive algorithm addresses discretization, regularization, and linearization errors. When Newton's method encounters convergence failures, the algorithm adaptively switches to the L-scheme solver. This solver precomputes the stabilization parameter <span><math><mi>L</mi><mo>&gt;</mo><mn>0</mn></math></span> in an offline phase to approximate the Jacobian. The efficiency of the adaptive algorithm is demonstrated through four prototypical examples, showcasing its effective error control and significant computational savings.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"195 \",\"pages\":\"Pages 239-264\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003086\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们建立了一类非线性和双重退化椭圆方程的后检误差分析,包括斯蒂芬问题和多孔介质中的快扩散和慢扩散。我们的分析利用平衡通量重建,在具有局部效率的能量型误差范数上产生保证的和完全可计算的上界。这些边界是完全可计算和鲁棒的,不受非线性和退化程度的影响。所提出的估计器引导自适应求解器在非线性求解器之间动态切换以优化迭代。自适应算法解决离散化,正则化和线性化误差。当牛顿法遇到收敛失败时,算法自适应切换到l -格式解算器。该求解器在离线阶段预先计算稳定参数L>;0以近似雅可比矩阵。通过四个原型算例验证了自适应算法的有效性,证明了其有效的误差控制和显著的计算节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibrated flux a posteriori error estimates and adaptivity for nonlinear and doubly degenerate elliptic problems
In this work, we establish a posteriori error analysis for a class of nonlinear and doubly degenerate elliptic equations, including the Stefan problem and both fast and slow diffusion in porous media. Our analysis leverages equilibrated flux reconstructions, yielding guaranteed and fully computable upper bounds on an energy-type error norm with local efficiency. These bounds are fully computable and robust, remaining unaffected by the degree of nonlinearity and degeneracy. The proposed estimators steer an adaptive solver that dynamically switches between nonlinear solvers to optimize iterations. The adaptive algorithm addresses discretization, regularization, and linearization errors. When Newton's method encounters convergence failures, the algorithm adaptively switches to the L-scheme solver. This solver precomputes the stabilization parameter L>0 in an offline phase to approximate the Jacobian. The efficiency of the adaptive algorithm is demonstrated through four prototypical examples, showcasing its effective error control and significant computational savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信