利用径向基函数求解非矩形域上第二类Volterra-Fredholm型二维积分方程

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mohsen Jalalian , Manochehr Kazemi , Mohammad Esmael Samei
{"title":"利用径向基函数求解非矩形域上第二类Volterra-Fredholm型二维积分方程","authors":"Mohsen Jalalian ,&nbsp;Manochehr Kazemi ,&nbsp;Mohammad Esmael Samei","doi":"10.1016/j.camwa.2025.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>This research, introduces a method to solve two-dimensional nonlinear Volterra-Fredholm integral equations with non-rectangular domains, numerically, based on radial basis functions. The method doesn't need a background mesh or cell structure in the domain. In the approach, all of the integrals are estimated using Gauss-Legendre quadrature formula. Error analysis and the rate of convergence of this method are also investigated. Numerical examples are included to demonstrate the validity and efficiency of this method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 265-279"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the second kind Volterra-Fredholm type of two-dimensional integral equations on non-rectangular domains via radial basis functions\",\"authors\":\"Mohsen Jalalian ,&nbsp;Manochehr Kazemi ,&nbsp;Mohammad Esmael Samei\",\"doi\":\"10.1016/j.camwa.2025.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research, introduces a method to solve two-dimensional nonlinear Volterra-Fredholm integral equations with non-rectangular domains, numerically, based on radial basis functions. The method doesn't need a background mesh or cell structure in the domain. In the approach, all of the integrals are estimated using Gauss-Legendre quadrature formula. Error analysis and the rate of convergence of this method are also investigated. Numerical examples are included to demonstrate the validity and efficiency of this method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"195 \",\"pages\":\"Pages 265-279\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003153\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于径向基函数的非矩形域二维非线性Volterra-Fredholm积分方程的数值求解方法。该方法不需要域内的背景网格或单元结构。在该方法中,所有的积分都使用高斯-勒让德积分公式进行估计。研究了该方法的误差分析和收敛速度。算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the second kind Volterra-Fredholm type of two-dimensional integral equations on non-rectangular domains via radial basis functions
This research, introduces a method to solve two-dimensional nonlinear Volterra-Fredholm integral equations with non-rectangular domains, numerically, based on radial basis functions. The method doesn't need a background mesh or cell structure in the domain. In the approach, all of the integrals are estimated using Gauss-Legendre quadrature formula. Error analysis and the rate of convergence of this method are also investigated. Numerical examples are included to demonstrate the validity and efficiency of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信