人工网络如何增强二阶混合扩展卡尔曼滤波用于能量管理?

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS
Jianyong Yu , Ahmed Kateb Jumaah Al-Nussairi , Mustafa Habeeb Chyad , Narinderjit Singh Sawaran Singh , Hossein Azarinfar , Luma Sabah Munshid , Yuzhen Liu , Wenti Huang
{"title":"人工网络如何增强二阶混合扩展卡尔曼滤波用于能量管理?","authors":"Jianyong Yu ,&nbsp;Ahmed Kateb Jumaah Al-Nussairi ,&nbsp;Mustafa Habeeb Chyad ,&nbsp;Narinderjit Singh Sawaran Singh ,&nbsp;Hossein Azarinfar ,&nbsp;Luma Sabah Munshid ,&nbsp;Yuzhen Liu ,&nbsp;Wenti Huang","doi":"10.1016/j.egyr.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate state estimation is vital for effective energy management. This study introduces an integrated approach combining Second-Order Hybrid Extended Kalman Filtering (SO-HEKF) with artificial neural networks to enhance estimation accuracy in dynamic energy environments. Simulation results indicate up to 16.7 % improvement in estimation accuracy and a 12.4 % reduction in operational cost compared to standard SO-HEKF. The adaptive learning mechanism enables real-time adjustments under varying grid conditions. Case studies across renewable integration, load forecasting, and demand response scenarios confirm the method’s effectiveness in improving resource allocation, grid stability, and robustness. This integrated approach supports more reliable and intelligent energy systems.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 1368-1391"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How can artificial networks enhance second-order hybrid extended kalman filtering for energy management?\",\"authors\":\"Jianyong Yu ,&nbsp;Ahmed Kateb Jumaah Al-Nussairi ,&nbsp;Mustafa Habeeb Chyad ,&nbsp;Narinderjit Singh Sawaran Singh ,&nbsp;Hossein Azarinfar ,&nbsp;Luma Sabah Munshid ,&nbsp;Yuzhen Liu ,&nbsp;Wenti Huang\",\"doi\":\"10.1016/j.egyr.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate state estimation is vital for effective energy management. This study introduces an integrated approach combining Second-Order Hybrid Extended Kalman Filtering (SO-HEKF) with artificial neural networks to enhance estimation accuracy in dynamic energy environments. Simulation results indicate up to 16.7 % improvement in estimation accuracy and a 12.4 % reduction in operational cost compared to standard SO-HEKF. The adaptive learning mechanism enables real-time adjustments under varying grid conditions. Case studies across renewable integration, load forecasting, and demand response scenarios confirm the method’s effectiveness in improving resource allocation, grid stability, and robustness. This integrated approach supports more reliable and intelligent energy systems.</div></div>\",\"PeriodicalId\":11798,\"journal\":{\"name\":\"Energy Reports\",\"volume\":\"14 \",\"pages\":\"Pages 1368-1391\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352484725004305\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725004305","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确的状态估计对有效的能量管理至关重要。本文提出了一种将二阶混合扩展卡尔曼滤波(SO-HEKF)与人工神经网络相结合的方法,以提高动态能量环境下的估计精度。仿真结果表明,与标准SO-HEKF相比,该算法的估计精度提高了16.7 %,运行成本降低了12.4 %。自适应学习机制可以在不同的网格条件下进行实时调整。可再生能源整合、负荷预测和需求响应场景的案例研究证实了该方法在改善资源分配、电网稳定性和鲁棒性方面的有效性。这种综合方法支持更可靠和智能的能源系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How can artificial networks enhance second-order hybrid extended kalman filtering for energy management?
Accurate state estimation is vital for effective energy management. This study introduces an integrated approach combining Second-Order Hybrid Extended Kalman Filtering (SO-HEKF) with artificial neural networks to enhance estimation accuracy in dynamic energy environments. Simulation results indicate up to 16.7 % improvement in estimation accuracy and a 12.4 % reduction in operational cost compared to standard SO-HEKF. The adaptive learning mechanism enables real-time adjustments under varying grid conditions. Case studies across renewable integration, load forecasting, and demand response scenarios confirm the method’s effectiveness in improving resource allocation, grid stability, and robustness. This integrated approach supports more reliable and intelligent energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信