具有多个弱奇异核的三维非线性PIDEs的分级网格高阶紧致CN-ADI格式

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Tianyuan Liu , Haixiang Zhang , Song Wang
{"title":"具有多个弱奇异核的三维非线性PIDEs的分级网格高阶紧致CN-ADI格式","authors":"Tianyuan Liu ,&nbsp;Haixiang Zhang ,&nbsp;Song Wang","doi":"10.1016/j.aml.2025.109697","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel compact Crank–Nicolson alternating direction implicit (CN-ADI) difference scheme tailored for three-dimensional (3D) nonlinear partial integro-differential equations (PIDEs) with multiple weakly singular kernels. The Riemann–Liouville (R-L) integral terms are discretized using the trapezoidal product integration (PI) rule, and the nonlinear term are approximated via second-order Taylor expansion. The time derivative is discretized using the CN formula, and the graded meshes are employed to address the weak singularity near <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></math></span>. The rigorous error estimates for the proposed scheme are derived, and comprehensive numerical experiments validate the theoretical results.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109697"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new high-order compact CN-ADI scheme on graded meshes for three-dimensional nonlinear PIDEs with multiple weakly singular kernels\",\"authors\":\"Tianyuan Liu ,&nbsp;Haixiang Zhang ,&nbsp;Song Wang\",\"doi\":\"10.1016/j.aml.2025.109697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel compact Crank–Nicolson alternating direction implicit (CN-ADI) difference scheme tailored for three-dimensional (3D) nonlinear partial integro-differential equations (PIDEs) with multiple weakly singular kernels. The Riemann–Liouville (R-L) integral terms are discretized using the trapezoidal product integration (PI) rule, and the nonlinear term are approximated via second-order Taylor expansion. The time derivative is discretized using the CN formula, and the graded meshes are employed to address the weak singularity near <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></math></span>. The rigorous error estimates for the proposed scheme are derived, and comprehensive numerical experiments validate the theoretical results.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109697\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002472\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002472","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对具有多个弱奇异核的三维非线性偏积分微分方程(PIDEs),提出了一种新的紧凑的Crank-Nicolson交替方向隐式差分格式。采用梯形积积分(PI)规则对Riemann-Liouville (R-L)积分项进行离散化,并通过二阶泰勒展开对非线性项进行逼近。采用CN公式对时间导数进行离散化,并采用梯度网格解决t=0附近的弱奇异性。给出了该方案的严格误差估计,并进行了全面的数值实验,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new high-order compact CN-ADI scheme on graded meshes for three-dimensional nonlinear PIDEs with multiple weakly singular kernels
This study presents a novel compact Crank–Nicolson alternating direction implicit (CN-ADI) difference scheme tailored for three-dimensional (3D) nonlinear partial integro-differential equations (PIDEs) with multiple weakly singular kernels. The Riemann–Liouville (R-L) integral terms are discretized using the trapezoidal product integration (PI) rule, and the nonlinear term are approximated via second-order Taylor expansion. The time derivative is discretized using the CN formula, and the graded meshes are employed to address the weak singularity near t=0. The rigorous error estimates for the proposed scheme are derived, and comprehensive numerical experiments validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信