O2Flow:对象感知光流估计

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ziyi Liu, Jiawei Wang, Haixu Bi, Hongmin Liu
{"title":"O2Flow:对象感知光流估计","authors":"Ziyi Liu,&nbsp;Jiawei Wang,&nbsp;Haixu Bi,&nbsp;Hongmin Liu","doi":"10.1016/j.patrec.2025.06.023","DOIUrl":null,"url":null,"abstract":"<div><div>Optical flow estimation is a fundamental task in computer vision that aims to obtain dense pixel motion of adjacent frames. It is widely considered a low-level vision task. Existing methods mainly focus on capturing local or global matching clues for pixel motion modeling, while neglecting object-level information. However, human perception of motion is closely linked to high-level object understanding. To introduce the object awareness into the optical flow estimation pipeline, we propose an Object-aware Optical Flow Estimation framework (O<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>Flow) comprising two branches: the Object Awareness (OA) Branch and the Flow Prediction (FP) Branch. Specifically, the FP-branch serves the basic optical flow prediction function, while the OA-branch is designed to capture the object-level information, guided by an auxiliary moving object prediction task. Extensive experimental results demonstrate that our method significantly enhances optical flow estimation performance in these challenging regions. Compared with the other two-view methods, O<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>Flow achieves state-of-the-art results on the Sintel and KITTI-2015 benchmarks.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":"Pages 58-64"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O2Flow: Object-aware optical flow estimation\",\"authors\":\"Ziyi Liu,&nbsp;Jiawei Wang,&nbsp;Haixu Bi,&nbsp;Hongmin Liu\",\"doi\":\"10.1016/j.patrec.2025.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical flow estimation is a fundamental task in computer vision that aims to obtain dense pixel motion of adjacent frames. It is widely considered a low-level vision task. Existing methods mainly focus on capturing local or global matching clues for pixel motion modeling, while neglecting object-level information. However, human perception of motion is closely linked to high-level object understanding. To introduce the object awareness into the optical flow estimation pipeline, we propose an Object-aware Optical Flow Estimation framework (O<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>Flow) comprising two branches: the Object Awareness (OA) Branch and the Flow Prediction (FP) Branch. Specifically, the FP-branch serves the basic optical flow prediction function, while the OA-branch is designed to capture the object-level information, guided by an auxiliary moving object prediction task. Extensive experimental results demonstrate that our method significantly enhances optical flow estimation performance in these challenging regions. Compared with the other two-view methods, O<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>Flow achieves state-of-the-art results on the Sintel and KITTI-2015 benchmarks.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"197 \",\"pages\":\"Pages 58-64\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016786552500251X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552500251X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

光流估计是计算机视觉中的一项基本任务,其目的是获取相邻帧的密集像素运动。它被广泛认为是一项低水平的视觉任务。现有的方法主要集中于捕获局部或全局匹配线索来进行像素运动建模,而忽略了对象级信息。然而,人类对运动的感知与高层次的物体理解密切相关。为了将对象感知引入到光流估计管道中,我们提出了一个对象感知光流估计框架(O2Flow),该框架包括两个分支:对象感知(OA)分支和光流预测(FP)分支。其中,fp分支提供基本的光流预测功能,oa分支在辅助运动目标预测任务的指导下捕获目标级信息。大量的实验结果表明,我们的方法显着提高了这些具有挑战性的区域的光流估计性能。与其他双视图方法相比,O2Flow在sinintel和KITTI-2015基准测试中取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

O2Flow: Object-aware optical flow estimation

O2Flow: Object-aware optical flow estimation
Optical flow estimation is a fundamental task in computer vision that aims to obtain dense pixel motion of adjacent frames. It is widely considered a low-level vision task. Existing methods mainly focus on capturing local or global matching clues for pixel motion modeling, while neglecting object-level information. However, human perception of motion is closely linked to high-level object understanding. To introduce the object awareness into the optical flow estimation pipeline, we propose an Object-aware Optical Flow Estimation framework (O2Flow) comprising two branches: the Object Awareness (OA) Branch and the Flow Prediction (FP) Branch. Specifically, the FP-branch serves the basic optical flow prediction function, while the OA-branch is designed to capture the object-level information, guided by an auxiliary moving object prediction task. Extensive experimental results demonstrate that our method significantly enhances optical flow estimation performance in these challenging regions. Compared with the other two-view methods, O2Flow achieves state-of-the-art results on the Sintel and KITTI-2015 benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信