{"title":"深度时空特征优化融合与协调注意机制在脑电下肢运动前意向解码中的应用","authors":"Runlin Dong , Xiaodong Zhang , Zhengzheng Zhou , Wenyu Zha , Aibin Zhu","doi":"10.1016/j.bbe.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Decoding pre-movement intention is crucial in developing a brain-computer interface (BCI) for neuro-rehabilitation robotic systems. However, the weak amplitude and non-smooth characteristics of EEG signals lead to the inability of existing methods to achieve the accuracy for proper applications. This study proposed a novel pre-movement intention decoding network framework to improve accuracy by extracting and optimizing the deep spatio-temporal features of EEG signals.</div></div><div><h3>Methods</h3><div>A deep spatio-temporal neural network structure was constructed based on the brain intention generation mechanism and its movement expression. The collected multi-channel EEG data were reorganized into brain topographic distributions, after the initial extraction of the features and optimization using the coordinate attention mechanism, a 3-layer dense block with two bi-directional gated recirculation units was designed to effectively extract the deep spatial and temporal features, further decoding the pre-movement intention efficiently.</div></div><div><h3>Results</h3><div>The experimental results showed an average accuracy of 95.51 ± 1.79 % for healthy subjects and 90.48 ± 2.90 % for stroke survivors in decoding pre-movement intention. All evaluation indexes are excellent. Pseudo-online testing showed the average TPR was 95.45 ± 3.80 % and 90.71 ± 7.77 % for healthy subjects and stroke survivors, respectively, and the latency was −1965 ± 48 ms and −1974 ± 36 ms. The results of the ablation and comparative analysis showed that the proposed framework is justified and its decoding capability outperforms other state-of-the-art algorithms.</div></div><div><h3>Conclusion</h3><div>The method proposed in this study has high decoding accuracy and good online performance in pre-movement intention decoding based on EEG signals, which lays the foundation for further neuro-rehabilitation robotic systems.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 3","pages":"Pages 515-527"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep spatio-temporal features optimised fusion with coordinate attention mechanism for EEG lower limb pre-movement intention decoding\",\"authors\":\"Runlin Dong , Xiaodong Zhang , Zhengzheng Zhou , Wenyu Zha , Aibin Zhu\",\"doi\":\"10.1016/j.bbe.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective</h3><div>Decoding pre-movement intention is crucial in developing a brain-computer interface (BCI) for neuro-rehabilitation robotic systems. However, the weak amplitude and non-smooth characteristics of EEG signals lead to the inability of existing methods to achieve the accuracy for proper applications. This study proposed a novel pre-movement intention decoding network framework to improve accuracy by extracting and optimizing the deep spatio-temporal features of EEG signals.</div></div><div><h3>Methods</h3><div>A deep spatio-temporal neural network structure was constructed based on the brain intention generation mechanism and its movement expression. The collected multi-channel EEG data were reorganized into brain topographic distributions, after the initial extraction of the features and optimization using the coordinate attention mechanism, a 3-layer dense block with two bi-directional gated recirculation units was designed to effectively extract the deep spatial and temporal features, further decoding the pre-movement intention efficiently.</div></div><div><h3>Results</h3><div>The experimental results showed an average accuracy of 95.51 ± 1.79 % for healthy subjects and 90.48 ± 2.90 % for stroke survivors in decoding pre-movement intention. All evaluation indexes are excellent. Pseudo-online testing showed the average TPR was 95.45 ± 3.80 % and 90.71 ± 7.77 % for healthy subjects and stroke survivors, respectively, and the latency was −1965 ± 48 ms and −1974 ± 36 ms. The results of the ablation and comparative analysis showed that the proposed framework is justified and its decoding capability outperforms other state-of-the-art algorithms.</div></div><div><h3>Conclusion</h3><div>The method proposed in this study has high decoding accuracy and good online performance in pre-movement intention decoding based on EEG signals, which lays the foundation for further neuro-rehabilitation robotic systems.</div></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"45 3\",\"pages\":\"Pages 515-527\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S020852162500052X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S020852162500052X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Deep spatio-temporal features optimised fusion with coordinate attention mechanism for EEG lower limb pre-movement intention decoding
Background and Objective
Decoding pre-movement intention is crucial in developing a brain-computer interface (BCI) for neuro-rehabilitation robotic systems. However, the weak amplitude and non-smooth characteristics of EEG signals lead to the inability of existing methods to achieve the accuracy for proper applications. This study proposed a novel pre-movement intention decoding network framework to improve accuracy by extracting and optimizing the deep spatio-temporal features of EEG signals.
Methods
A deep spatio-temporal neural network structure was constructed based on the brain intention generation mechanism and its movement expression. The collected multi-channel EEG data were reorganized into brain topographic distributions, after the initial extraction of the features and optimization using the coordinate attention mechanism, a 3-layer dense block with two bi-directional gated recirculation units was designed to effectively extract the deep spatial and temporal features, further decoding the pre-movement intention efficiently.
Results
The experimental results showed an average accuracy of 95.51 ± 1.79 % for healthy subjects and 90.48 ± 2.90 % for stroke survivors in decoding pre-movement intention. All evaluation indexes are excellent. Pseudo-online testing showed the average TPR was 95.45 ± 3.80 % and 90.71 ± 7.77 % for healthy subjects and stroke survivors, respectively, and the latency was −1965 ± 48 ms and −1974 ± 36 ms. The results of the ablation and comparative analysis showed that the proposed framework is justified and its decoding capability outperforms other state-of-the-art algorithms.
Conclusion
The method proposed in this study has high decoding accuracy and good online performance in pre-movement intention decoding based on EEG signals, which lays the foundation for further neuro-rehabilitation robotic systems.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.