迈向高性能网络编码:FPGA加速与有界值生成器

IF 3.1 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jiaxin Qing;Philip H. W. Leong;Kin-Hong Lee;Raymond W. Yeung
{"title":"迈向高性能网络编码:FPGA加速与有界值生成器","authors":"Jiaxin Qing;Philip H. W. Leong;Kin-Hong Lee;Raymond W. Yeung","doi":"10.1109/TVLSI.2025.3572517","DOIUrl":null,"url":null,"abstract":"The network coding enhances performance in network communications and distributed storage by increasing throughput and robustness while reducing latency. Batched sparse (BATS) codes are a class of capacity-achieving network codes, but their practical applications are hindered by their structure, computational intensity, and power demands of finite field (FF) operations. Most literature focuses on algorithmic-level techniques to improve the coding efficiency. Optimization with an algorithm/hardware co-designing approach has long been neglected. Leveraging the unique structure of BATS codes, we first present cyclic-shift BATS (CS-BATS), a hardware-friendly variant. Next, we propose a simple but effective bounded-value (BV) generator, to reduce the size of a finite field multiplier by up to 70%. Finally, we report on a scalable and resource-efficient field-programmable gate array (FPGA)-based network coding accelerator that achieves a throughput of 27 Gb/s, a speedup of more than 300 over software.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 8","pages":"2274-2287"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward High-Performance Network Coding: FPGA Acceleration With Bounded-Value Generators\",\"authors\":\"Jiaxin Qing;Philip H. W. Leong;Kin-Hong Lee;Raymond W. Yeung\",\"doi\":\"10.1109/TVLSI.2025.3572517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The network coding enhances performance in network communications and distributed storage by increasing throughput and robustness while reducing latency. Batched sparse (BATS) codes are a class of capacity-achieving network codes, but their practical applications are hindered by their structure, computational intensity, and power demands of finite field (FF) operations. Most literature focuses on algorithmic-level techniques to improve the coding efficiency. Optimization with an algorithm/hardware co-designing approach has long been neglected. Leveraging the unique structure of BATS codes, we first present cyclic-shift BATS (CS-BATS), a hardware-friendly variant. Next, we propose a simple but effective bounded-value (BV) generator, to reduce the size of a finite field multiplier by up to 70%. Finally, we report on a scalable and resource-efficient field-programmable gate array (FPGA)-based network coding accelerator that achieves a throughput of 27 Gb/s, a speedup of more than 300 over software.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 8\",\"pages\":\"2274-2287\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021553/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11021553/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

网络编码通过增加吞吐量和鲁棒性来提高网络通信和分布式存储的性能,同时减少延迟。批处理稀疏码(Batched sparse code, BATS)是一类容量实现型网络码,但其结构、计算强度和有限域(finite field, FF)运算的功率需求等限制了其实际应用。大多数文献关注于算法级技术来提高编码效率。长期以来,算法/硬件协同设计方法的优化一直被忽视。利用BATS代码的独特结构,我们首先提出了一种硬件友好型的循环移位BATS (CS-BATS)。接下来,我们提出了一个简单但有效的有界值(BV)生成器,以减少有限域乘法器的大小高达70%。最后,我们报告了一种可扩展且资源高效的基于现场可编程门阵列(FPGA)的网络编码加速器,其吞吐量达到27 Gb/s,比软件加速300以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward High-Performance Network Coding: FPGA Acceleration With Bounded-Value Generators
The network coding enhances performance in network communications and distributed storage by increasing throughput and robustness while reducing latency. Batched sparse (BATS) codes are a class of capacity-achieving network codes, but their practical applications are hindered by their structure, computational intensity, and power demands of finite field (FF) operations. Most literature focuses on algorithmic-level techniques to improve the coding efficiency. Optimization with an algorithm/hardware co-designing approach has long been neglected. Leveraging the unique structure of BATS codes, we first present cyclic-shift BATS (CS-BATS), a hardware-friendly variant. Next, we propose a simple but effective bounded-value (BV) generator, to reduce the size of a finite field multiplier by up to 70%. Finally, we report on a scalable and resource-efficient field-programmable gate array (FPGA)-based network coding accelerator that achieves a throughput of 27 Gb/s, a speedup of more than 300 over software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信