{"title":"纳米颗粒包封的有机磁凝胶:交联网络用于广谱污染物去除","authors":"Sanjeevi Prasath Sridhar, Sudha Uthaman, Logesh Kumar Pandurangan, Armin Kriele, Debasish Saha, Baohu Wu, Velraj Parthiban, Janaki Vembu Murugesan, Balachandar Vijayakumar, Stephan Förster, Aurel Radulescu, Brijitta Joseph","doi":"10.1038/s41545-025-00496-w","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we report the synthesis of a poly(4-vinylpyridine)-reduced graphene oxide-magnetite (P4VP-rGO-Fe₃O₄) organo-magnetogel (OMG), designed for high-performance pollutant adsorption. In the OMG, rGO and Fe₃O₄ nanoparticles are in situ encapsulated during the chemical cross-linking of the 4-vinylpyridine polymer. The adsorption performance of OMG was evaluated using three model water pollutants, viz., organic dyes, heavy metal ions, and waterborne pathogens. The equilibrium adsorption capacity exceeded 400 mg/g for the organic dyes. Beyond dye removal, the OMG also adsorbed heavy metal ions, such as AsO<sub>2</sub><sup>−</sup>, Pb²⁺, Cr<sub>2</sub>O<sub>7</sub><sup>2−,</sup> and Cd²⁺ ions, with removal efficiencies exceeding 60% and adsorption capacities exceeding 200 mg/g. The OMG also exhibited remarkable antibacterial activity against <i>E. coli</i> and <i>S. Typhi</i>, with almost zero viability for <i>S. Typhi</i>. The OMG promises a broad-spectrum applicability in wastewater treatment, offering a sustainable and efficient solution for water decontamination.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-encapsulated organo-magnetogels: crosslinked network for broad-spectrum pollutant removal\",\"authors\":\"Sanjeevi Prasath Sridhar, Sudha Uthaman, Logesh Kumar Pandurangan, Armin Kriele, Debasish Saha, Baohu Wu, Velraj Parthiban, Janaki Vembu Murugesan, Balachandar Vijayakumar, Stephan Förster, Aurel Radulescu, Brijitta Joseph\",\"doi\":\"10.1038/s41545-025-00496-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, we report the synthesis of a poly(4-vinylpyridine)-reduced graphene oxide-magnetite (P4VP-rGO-Fe₃O₄) organo-magnetogel (OMG), designed for high-performance pollutant adsorption. In the OMG, rGO and Fe₃O₄ nanoparticles are in situ encapsulated during the chemical cross-linking of the 4-vinylpyridine polymer. The adsorption performance of OMG was evaluated using three model water pollutants, viz., organic dyes, heavy metal ions, and waterborne pathogens. The equilibrium adsorption capacity exceeded 400 mg/g for the organic dyes. Beyond dye removal, the OMG also adsorbed heavy metal ions, such as AsO<sub>2</sub><sup>−</sup>, Pb²⁺, Cr<sub>2</sub>O<sub>7</sub><sup>2−,</sup> and Cd²⁺ ions, with removal efficiencies exceeding 60% and adsorption capacities exceeding 200 mg/g. The OMG also exhibited remarkable antibacterial activity against <i>E. coli</i> and <i>S. Typhi</i>, with almost zero viability for <i>S. Typhi</i>. The OMG promises a broad-spectrum applicability in wastewater treatment, offering a sustainable and efficient solution for water decontamination.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00496-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00496-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Nanoparticle-encapsulated organo-magnetogels: crosslinked network for broad-spectrum pollutant removal
In this contribution, we report the synthesis of a poly(4-vinylpyridine)-reduced graphene oxide-magnetite (P4VP-rGO-Fe₃O₄) organo-magnetogel (OMG), designed for high-performance pollutant adsorption. In the OMG, rGO and Fe₃O₄ nanoparticles are in situ encapsulated during the chemical cross-linking of the 4-vinylpyridine polymer. The adsorption performance of OMG was evaluated using three model water pollutants, viz., organic dyes, heavy metal ions, and waterborne pathogens. The equilibrium adsorption capacity exceeded 400 mg/g for the organic dyes. Beyond dye removal, the OMG also adsorbed heavy metal ions, such as AsO2−, Pb²⁺, Cr2O72−, and Cd²⁺ ions, with removal efficiencies exceeding 60% and adsorption capacities exceeding 200 mg/g. The OMG also exhibited remarkable antibacterial activity against E. coli and S. Typhi, with almost zero viability for S. Typhi. The OMG promises a broad-spectrum applicability in wastewater treatment, offering a sustainable and efficient solution for water decontamination.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.