北方泥炭地微生物群落表现出对变暖的抗性,并从土壤有机质中获取电子受体

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Katherine Duchesneau, Borja Aldeguer-Riquelme, Caitlin Petro, Ghiwa Makke, Madison Green, Malak Tfaily, Rachel Wilson, Spencer W. Roth, Eric R. Johnston, Laurel A. Kluber, Christopher W. Schadt, Jesse B. Trejo, Stephen J. Callister, Samuel O. Purvine, Jeffrey P. Chanton, Paul J. Hanson, Susannah Tringe, Emiley Eloe-Fadrosh, Tijana Glavina del Rio, Konstantinos T. Konstantinidis, Joel E. Kostka
{"title":"北方泥炭地微生物群落表现出对变暖的抗性,并从土壤有机质中获取电子受体","authors":"Katherine Duchesneau, Borja Aldeguer-Riquelme, Caitlin Petro, Ghiwa Makke, Madison Green, Malak Tfaily, Rachel Wilson, Spencer W. Roth, Eric R. Johnston, Laurel A. Kluber, Christopher W. Schadt, Jesse B. Trejo, Stephen J. Callister, Samuel O. Purvine, Jeffrey P. Chanton, Paul J. Hanson, Susannah Tringe, Emiley Eloe-Fadrosh, Tijana Glavina del Rio, Konstantinos T. Konstantinidis, Joel E. Kostka","doi":"10.1038/s41467-025-61664-7","DOIUrl":null,"url":null,"abstract":"<p>The response of microbial communities that regulate belowground carbon turnover to climate change drivers in peatlands is poorly understood. Here, we leverage a whole ecosystem warming experiment to elucidate the key processes of terminal carbon decomposition and community responses to temperature rise. Our dataset of 697 metagenome-assembled genomes (MAGs) represents the microbial community from the surface (10 cm) to 2 m deep into the peat column, with only 3.7% of genomes overlapping with other well-studied peatlands. Community composition has yet to show a significant response to warming after 3 years, suggesting that metabolically diverse soil microbial communities are resistant to climate change. Surprisingly, abundant and active methanogens in the genus <i>Candidatus</i> Methanoflorens, <i>Methanobacterium</i>, and <i>Methanoregula</i> show the potential for both acetoclastic and hydrogenotrophic methanogenesis. Nonetheless, the predominant pathways for anaerobic carbon decomposition include sulfate/sulfite reduction, denitrification, and acetogenesis, rather than methanogenesis based on gene abundances. Multi-omics data suggest that organic matter cleavage provides terminal electron acceptors, which together with methanogen metabolic flexibility, may explain peat microbiome composition resistance to warming.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"278 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter\",\"authors\":\"Katherine Duchesneau, Borja Aldeguer-Riquelme, Caitlin Petro, Ghiwa Makke, Madison Green, Malak Tfaily, Rachel Wilson, Spencer W. Roth, Eric R. Johnston, Laurel A. Kluber, Christopher W. Schadt, Jesse B. Trejo, Stephen J. Callister, Samuel O. Purvine, Jeffrey P. Chanton, Paul J. Hanson, Susannah Tringe, Emiley Eloe-Fadrosh, Tijana Glavina del Rio, Konstantinos T. Konstantinidis, Joel E. Kostka\",\"doi\":\"10.1038/s41467-025-61664-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The response of microbial communities that regulate belowground carbon turnover to climate change drivers in peatlands is poorly understood. Here, we leverage a whole ecosystem warming experiment to elucidate the key processes of terminal carbon decomposition and community responses to temperature rise. Our dataset of 697 metagenome-assembled genomes (MAGs) represents the microbial community from the surface (10 cm) to 2 m deep into the peat column, with only 3.7% of genomes overlapping with other well-studied peatlands. Community composition has yet to show a significant response to warming after 3 years, suggesting that metabolically diverse soil microbial communities are resistant to climate change. Surprisingly, abundant and active methanogens in the genus <i>Candidatus</i> Methanoflorens, <i>Methanobacterium</i>, and <i>Methanoregula</i> show the potential for both acetoclastic and hydrogenotrophic methanogenesis. Nonetheless, the predominant pathways for anaerobic carbon decomposition include sulfate/sulfite reduction, denitrification, and acetogenesis, rather than methanogenesis based on gene abundances. Multi-omics data suggest that organic matter cleavage provides terminal electron acceptors, which together with methanogen metabolic flexibility, may explain peat microbiome composition resistance to warming.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"278 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61664-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61664-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

调控泥炭地地下碳周转的微生物群落对气候变化驱动因素的响应尚不清楚。在此,我们利用整个生态系统变暖实验来阐明终端碳分解的关键过程和群落对温度上升的响应。我们的697个宏基因组组装基因组(MAGs)数据集代表了泥炭柱表面(10厘米)至2米深处的微生物群落,只有3.7%的基因组与其他研究充分的泥炭地重叠。群落组成在3年后仍未显示出对气候变暖的显著响应,这表明代谢多样化的土壤微生物群落对气候变化具有抵抗力。令人惊讶的是,在Candidatus Methanoflorens、Methanobacterium和Methanoregula属中丰富而活跃的产甲烷菌显示出醋酸裂解和氢营养产甲烷的潜力。尽管如此,厌氧碳分解的主要途径包括硫酸盐/亚硫酸盐还原、反硝化和丙酮生成,而不是基于基因丰度的甲烷生成。多组学数据表明,有机质裂解提供了末端电子受体,与甲烷菌代谢灵活性一起,可能解释了泥炭微生物组组成对变暖的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter

Northern peatland microbial communities exhibit resistance to warming and acquire electron acceptors from soil organic matter

The response of microbial communities that regulate belowground carbon turnover to climate change drivers in peatlands is poorly understood. Here, we leverage a whole ecosystem warming experiment to elucidate the key processes of terminal carbon decomposition and community responses to temperature rise. Our dataset of 697 metagenome-assembled genomes (MAGs) represents the microbial community from the surface (10 cm) to 2 m deep into the peat column, with only 3.7% of genomes overlapping with other well-studied peatlands. Community composition has yet to show a significant response to warming after 3 years, suggesting that metabolically diverse soil microbial communities are resistant to climate change. Surprisingly, abundant and active methanogens in the genus Candidatus Methanoflorens, Methanobacterium, and Methanoregula show the potential for both acetoclastic and hydrogenotrophic methanogenesis. Nonetheless, the predominant pathways for anaerobic carbon decomposition include sulfate/sulfite reduction, denitrification, and acetogenesis, rather than methanogenesis based on gene abundances. Multi-omics data suggest that organic matter cleavage provides terminal electron acceptors, which together with methanogen metabolic flexibility, may explain peat microbiome composition resistance to warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信