Jin Ma,Yichong Cai,Sida Rong,Mengqi Zhang,Jianing Zhang,Zheng Han,Shiqi Liu,Wenyin Yang,Changkun Zhang,Feifei Zhang,Ya Ji
{"title":"中性蒽醌液流电池的双平台单分子氧化还原靶向反应。","authors":"Jin Ma,Yichong Cai,Sida Rong,Mengqi Zhang,Jianing Zhang,Zheng Han,Shiqi Liu,Wenyin Yang,Changkun Zhang,Feifei Zhang,Ya Ji","doi":"10.1021/acsnano.5c06747","DOIUrl":null,"url":null,"abstract":"Aqueous organic redox flow batteries (AORFBs) represent a promising technology for large-scale energy storage due to their high abundance in nature, safety, cost-effectiveness, and flexibility in molecular design. However, AORFBs suffer from a low energy density and unsatisfactory stability. Herein, we report a pH-neutral and high-energy-density anthraquinone-based flow battery utilizing a redox-targeting (RT) concept. Interestingly, single-molecule redox-targeting (SMRT) reaction with two voltage plateaus is successfully designed between redox mediator (RM) anthraquinone-2,7-disulfonic acid disodium salt (2,7-AQDS) and solid material poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (PDBM) harnessing proton-coupled electron transfer, combining the advantages of both SMRT and dual-RM RT systems. The neutral RT flow battery in this work exhibits impressive performance with a series of excellent results including a high volumetric capacity of 97.1 Ah L-1 (based on the volume of anolyte, 14.22 times that of blank RFB), a coulombic efficiency of 99.99%, a capacity retention of 99.9% per cycle, and solid material utilization of 92.5%. Inspiringly, operando nuclear magnetic resonance and ultraviolet-visible spectroscopy are employed to dynamically monitor the solid-liquid interface between PDBM and AQDS during battery cycling, successfully demonstrating the two reversible redox-targeting reaction processes. This work develops a neutral, energy-dense aqueous organic redox flow battery, extensively elucidating the fundamental mechanism of the dual-plateau SMRT reaction, presenting a promising solution to large-scale long-duration energy storage.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"55 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Platform Single-Molecule Redox-Targeting Reaction in Neutral Anthraquinone Flow Batteries.\",\"authors\":\"Jin Ma,Yichong Cai,Sida Rong,Mengqi Zhang,Jianing Zhang,Zheng Han,Shiqi Liu,Wenyin Yang,Changkun Zhang,Feifei Zhang,Ya Ji\",\"doi\":\"10.1021/acsnano.5c06747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous organic redox flow batteries (AORFBs) represent a promising technology for large-scale energy storage due to their high abundance in nature, safety, cost-effectiveness, and flexibility in molecular design. However, AORFBs suffer from a low energy density and unsatisfactory stability. Herein, we report a pH-neutral and high-energy-density anthraquinone-based flow battery utilizing a redox-targeting (RT) concept. Interestingly, single-molecule redox-targeting (SMRT) reaction with two voltage plateaus is successfully designed between redox mediator (RM) anthraquinone-2,7-disulfonic acid disodium salt (2,7-AQDS) and solid material poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (PDBM) harnessing proton-coupled electron transfer, combining the advantages of both SMRT and dual-RM RT systems. The neutral RT flow battery in this work exhibits impressive performance with a series of excellent results including a high volumetric capacity of 97.1 Ah L-1 (based on the volume of anolyte, 14.22 times that of blank RFB), a coulombic efficiency of 99.99%, a capacity retention of 99.9% per cycle, and solid material utilization of 92.5%. Inspiringly, operando nuclear magnetic resonance and ultraviolet-visible spectroscopy are employed to dynamically monitor the solid-liquid interface between PDBM and AQDS during battery cycling, successfully demonstrating the two reversible redox-targeting reaction processes. This work develops a neutral, energy-dense aqueous organic redox flow battery, extensively elucidating the fundamental mechanism of the dual-plateau SMRT reaction, presenting a promising solution to large-scale long-duration energy storage.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c06747\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c06747","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-Platform Single-Molecule Redox-Targeting Reaction in Neutral Anthraquinone Flow Batteries.
Aqueous organic redox flow batteries (AORFBs) represent a promising technology for large-scale energy storage due to their high abundance in nature, safety, cost-effectiveness, and flexibility in molecular design. However, AORFBs suffer from a low energy density and unsatisfactory stability. Herein, we report a pH-neutral and high-energy-density anthraquinone-based flow battery utilizing a redox-targeting (RT) concept. Interestingly, single-molecule redox-targeting (SMRT) reaction with two voltage plateaus is successfully designed between redox mediator (RM) anthraquinone-2,7-disulfonic acid disodium salt (2,7-AQDS) and solid material poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (PDBM) harnessing proton-coupled electron transfer, combining the advantages of both SMRT and dual-RM RT systems. The neutral RT flow battery in this work exhibits impressive performance with a series of excellent results including a high volumetric capacity of 97.1 Ah L-1 (based on the volume of anolyte, 14.22 times that of blank RFB), a coulombic efficiency of 99.99%, a capacity retention of 99.9% per cycle, and solid material utilization of 92.5%. Inspiringly, operando nuclear magnetic resonance and ultraviolet-visible spectroscopy are employed to dynamically monitor the solid-liquid interface between PDBM and AQDS during battery cycling, successfully demonstrating the two reversible redox-targeting reaction processes. This work develops a neutral, energy-dense aqueous organic redox flow battery, extensively elucidating the fundamental mechanism of the dual-plateau SMRT reaction, presenting a promising solution to large-scale long-duration energy storage.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.