纳米限制三相界面工程增强质子交换膜燃料电池中氧的输运。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juejin Teng, Prof. Min Wang, Dr. Quanbin Dai, Yilin Wang, Enyang Sun, Prof. Mingbo Wu, Prof. Zhongtao Li
{"title":"纳米限制三相界面工程增强质子交换膜燃料电池中氧的输运。","authors":"Juejin Teng,&nbsp;Prof. Min Wang,&nbsp;Dr. Quanbin Dai,&nbsp;Yilin Wang,&nbsp;Enyang Sun,&nbsp;Prof. Mingbo Wu,&nbsp;Prof. Zhongtao Li","doi":"10.1002/anie.202507604","DOIUrl":null,"url":null,"abstract":"<p>In proton exchange membrane fuel cells (PEMFCs), ionomer aggregation on Pt/C catalysts leads to increased oxygen transport resistance of conventional catalyst layers. This behavior significantly influences oxygen transport in the microenvironment at the triple-phase interface of Pt/C catalysts. To address this challenge, triazine-based covalent organic frameworks (COFs) were incorporated into the cathode catalyst layer, so that their well-defined pore structure and proton eligible triazine sites interact with terminal sulfonate groups of the Nafion ionomer. This interaction regulates the triple-phase microenvironment, enhances Pt utilization, and establishes directed oxygen-enriched transport channels. Under low-platinum loading conditions (−0.05 mg<sub>Pt</sub> cm<sup>−2</sup>) in a H<sub>2</sub>─O<sub>2</sub> PEMFC, the COF-modified system achieved a peak power density of 1.55 W cm<sup>−2</sup>, 1.3 times of conventional PEMFCs, with a 38% reduction in local oxygen transport resistance. This work presents a new design principle for high-performance low-platinum PEMFCs, as a new approach to further advance their commercialization.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 37","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Oxygen Transport in Proton Exchange Membrane Fuel Cell Through Nanoconfined Triple Phase Interface Engineering\",\"authors\":\"Juejin Teng,&nbsp;Prof. Min Wang,&nbsp;Dr. Quanbin Dai,&nbsp;Yilin Wang,&nbsp;Enyang Sun,&nbsp;Prof. Mingbo Wu,&nbsp;Prof. Zhongtao Li\",\"doi\":\"10.1002/anie.202507604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In proton exchange membrane fuel cells (PEMFCs), ionomer aggregation on Pt/C catalysts leads to increased oxygen transport resistance of conventional catalyst layers. This behavior significantly influences oxygen transport in the microenvironment at the triple-phase interface of Pt/C catalysts. To address this challenge, triazine-based covalent organic frameworks (COFs) were incorporated into the cathode catalyst layer, so that their well-defined pore structure and proton eligible triazine sites interact with terminal sulfonate groups of the Nafion ionomer. This interaction regulates the triple-phase microenvironment, enhances Pt utilization, and establishes directed oxygen-enriched transport channels. Under low-platinum loading conditions (−0.05 mg<sub>Pt</sub> cm<sup>−2</sup>) in a H<sub>2</sub>─O<sub>2</sub> PEMFC, the COF-modified system achieved a peak power density of 1.55 W cm<sup>−2</sup>, 1.3 times of conventional PEMFCs, with a 38% reduction in local oxygen transport resistance. This work presents a new design principle for high-performance low-platinum PEMFCs, as a new approach to further advance their commercialization.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 37\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507604\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507604","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在质子交换膜燃料电池(pemfc)中,Pt/C催化剂上的离聚体聚集导致常规催化剂层的氧传输阻力增加。这一行为显著影响了Pt/C催化剂三相界面微环境中的氧输运。为了解决这一挑战,将基于三嗪的共价有机框架(COFs)整合到阴极催化剂层中,以便其明确的孔隙结构和质子合格的三嗪位点与Nafion离子的末端磺酸基相互作用。这种相互作用调节了三相微环境,提高了Pt的利用率,并建立了定向富氧运输通道。在H2─O2 PEMFC低铂负载条件下(-0.05 mgPt cm-2), cof修饰体系的峰值功率密度为1.55 W cm-2,是传统PEMFC的1.3倍,局部氧传输阻力降低38%。本研究提出了一种高性能低铂pemfc的新设计原则,为进一步推进其商业化提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Oxygen Transport in Proton Exchange Membrane Fuel Cell Through Nanoconfined Triple Phase Interface Engineering

Enhancing Oxygen Transport in Proton Exchange Membrane Fuel Cell Through Nanoconfined Triple Phase Interface Engineering

In proton exchange membrane fuel cells (PEMFCs), ionomer aggregation on Pt/C catalysts leads to increased oxygen transport resistance of conventional catalyst layers. This behavior significantly influences oxygen transport in the microenvironment at the triple-phase interface of Pt/C catalysts. To address this challenge, triazine-based covalent organic frameworks (COFs) were incorporated into the cathode catalyst layer, so that their well-defined pore structure and proton eligible triazine sites interact with terminal sulfonate groups of the Nafion ionomer. This interaction regulates the triple-phase microenvironment, enhances Pt utilization, and establishes directed oxygen-enriched transport channels. Under low-platinum loading conditions (−0.05 mgPt cm−2) in a H2─O2 PEMFC, the COF-modified system achieved a peak power density of 1.55 W cm−2, 1.3 times of conventional PEMFCs, with a 38% reduction in local oxygen transport resistance. This work presents a new design principle for high-performance low-platinum PEMFCs, as a new approach to further advance their commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信