具有离子导电亚纳米通道的化学交联聚苯并咪唑膜用于锌铁液流电池。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuqin Huang,Chenyi Liao,Qilei Song,Zhizhang Yuan,Xianfeng Li
{"title":"具有离子导电亚纳米通道的化学交联聚苯并咪唑膜用于锌铁液流电池。","authors":"Yuqin Huang,Chenyi Liao,Qilei Song,Zhizhang Yuan,Xianfeng Li","doi":"10.1002/anie.202511744","DOIUrl":null,"url":null,"abstract":"Ion-selective membranes with sub-nanometer micropores are essential in various separation processes and energy-related devices. However, the absence of molecular-level insights into ion transport behavior in sub-nanochannels challenges the accurate construction of fit-for-purpose membranes. Herein, we design cross-linked polybenzimidazole membranes with varying angstrom-scale pores and functional group densities by in situ crosslinking reaction during dual-coagulation bath-induced phase separation process. The modulation of pore architecture and pore chemistry enables precise control of ion transport under confined channels. Molecular dynamics simulations and experimental results reveal that ion dehydration and ion-pore wall interactions are the two dominant mechanisms governing fast and selective ion transport within charged sub-nanometer channels. Based on \"dehydration-diffusion\" mechanism, membranes with low steric hindrance and weak ion-pore wall interactions facilitate low-energy-barrier ion transport. We demonstrate their applications in alkalescent zinc-iron flow batteries, achieving a high peak power density of 607.8 mW cm-2 and energy efficiency exceeding 80% at a current density of 200 mA cm-2. Our study advances the understanding of ion transport in membranes with sub-nanometer pores and provides guidelines for designing next-generation ion-selective membranes by regulating channel size and channel chemistry.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"37 1","pages":"e202511744"},"PeriodicalIF":16.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Cross-Linked Polybenzimidazole Membranes with Ion-Conductive Sub-Nanometer Channels for Zinc-Iron Flow Batteries.\",\"authors\":\"Yuqin Huang,Chenyi Liao,Qilei Song,Zhizhang Yuan,Xianfeng Li\",\"doi\":\"10.1002/anie.202511744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion-selective membranes with sub-nanometer micropores are essential in various separation processes and energy-related devices. However, the absence of molecular-level insights into ion transport behavior in sub-nanochannels challenges the accurate construction of fit-for-purpose membranes. Herein, we design cross-linked polybenzimidazole membranes with varying angstrom-scale pores and functional group densities by in situ crosslinking reaction during dual-coagulation bath-induced phase separation process. The modulation of pore architecture and pore chemistry enables precise control of ion transport under confined channels. Molecular dynamics simulations and experimental results reveal that ion dehydration and ion-pore wall interactions are the two dominant mechanisms governing fast and selective ion transport within charged sub-nanometer channels. Based on \\\"dehydration-diffusion\\\" mechanism, membranes with low steric hindrance and weak ion-pore wall interactions facilitate low-energy-barrier ion transport. We demonstrate their applications in alkalescent zinc-iron flow batteries, achieving a high peak power density of 607.8 mW cm-2 and energy efficiency exceeding 80% at a current density of 200 mA cm-2. Our study advances the understanding of ion transport in membranes with sub-nanometer pores and provides guidelines for designing next-generation ion-selective membranes by regulating channel size and channel chemistry.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"37 1\",\"pages\":\"e202511744\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202511744\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202511744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有亚纳米微孔的离子选择膜在各种分离过程和能源相关装置中是必不可少的。然而,缺乏对亚纳米通道中离子传输行为的分子水平的了解,对精确构建适合用途的膜提出了挑战。在此,我们设计了具有不同埃级孔径和官能团密度的聚苯并咪唑交联膜,通过原位交联反应在双混凝浴诱导相分离过程中进行。孔结构和孔化学的调制使离子在受限通道下的传输得到精确控制。分子动力学模拟和实验结果表明,离子脱水和离子-孔壁相互作用是控制离子在带电亚纳米通道内快速和选择性传输的两个主要机制。基于“脱水-扩散”机制,具有低空间位阻和弱离子-孔壁相互作用的膜有利于低能垒离子的传输。我们展示了它们在碱性锌铁液流电池中的应用,实现了607.8 mW cm-2的峰值功率密度和超过80%的能量效率,电流密度为200 mA cm-2。我们的研究促进了对亚纳米孔膜中离子传输的理解,并为通过调节通道大小和通道化学来设计下一代离子选择膜提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically Cross-Linked Polybenzimidazole Membranes with Ion-Conductive Sub-Nanometer Channels for Zinc-Iron Flow Batteries.
Ion-selective membranes with sub-nanometer micropores are essential in various separation processes and energy-related devices. However, the absence of molecular-level insights into ion transport behavior in sub-nanochannels challenges the accurate construction of fit-for-purpose membranes. Herein, we design cross-linked polybenzimidazole membranes with varying angstrom-scale pores and functional group densities by in situ crosslinking reaction during dual-coagulation bath-induced phase separation process. The modulation of pore architecture and pore chemistry enables precise control of ion transport under confined channels. Molecular dynamics simulations and experimental results reveal that ion dehydration and ion-pore wall interactions are the two dominant mechanisms governing fast and selective ion transport within charged sub-nanometer channels. Based on "dehydration-diffusion" mechanism, membranes with low steric hindrance and weak ion-pore wall interactions facilitate low-energy-barrier ion transport. We demonstrate their applications in alkalescent zinc-iron flow batteries, achieving a high peak power density of 607.8 mW cm-2 and energy efficiency exceeding 80% at a current density of 200 mA cm-2. Our study advances the understanding of ion transport in membranes with sub-nanometer pores and provides guidelines for designing next-generation ion-selective membranes by regulating channel size and channel chemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信