人工智能在冠状动脉内光学相干断层扫描分析中的应用综述与建议。

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-05-15 eCollection Date: 2025-07-01 DOI:10.1093/ehjdh/ztaf053
Xu Chen, Yuan Huang, Benn Jessney, Jason Sangha, Sophie Gu, Carola-Bibiane Schönlieb, Martin Bennett, Michael Roberts
{"title":"人工智能在冠状动脉内光学相干断层扫描分析中的应用综述与建议。","authors":"Xu Chen, Yuan Huang, Benn Jessney, Jason Sangha, Sophie Gu, Carola-Bibiane Schönlieb, Martin Bennett, Michael Roberts","doi":"10.1093/ehjdh/ztaf053","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) tools hold great promise for the rapid and accurate diagnosis of coronary artery disease (CAD) from intravascular optical coherent tomography (IVOCT) images. Numerous papers have been published describing AI-based models for different diagnostic tasks, yet it remains unclear, which models have potential clinical utility and have been properly validated. This systematic review considered published literature between January 2015 and December 2024 describing AI-based diagnosis of CAD using IVOCT. Our search identified 8600 studies, with 629 included after initial screening and 39 studies included in the final systematic review after quality screening. Our findings indicate that most of the identified models are not currently suitable for clinical use, primarily due to methodological flaws and underlying biases. To address these issues, we provide recommendations to improve model quality and research practices to enhance the development of clinically useful AI products.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 4","pages":"529-539"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review and recommendations for using artificial intelligence in intracoronary optical coherence tomography analysis.\",\"authors\":\"Xu Chen, Yuan Huang, Benn Jessney, Jason Sangha, Sophie Gu, Carola-Bibiane Schönlieb, Martin Bennett, Michael Roberts\",\"doi\":\"10.1093/ehjdh/ztaf053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) tools hold great promise for the rapid and accurate diagnosis of coronary artery disease (CAD) from intravascular optical coherent tomography (IVOCT) images. Numerous papers have been published describing AI-based models for different diagnostic tasks, yet it remains unclear, which models have potential clinical utility and have been properly validated. This systematic review considered published literature between January 2015 and December 2024 describing AI-based diagnosis of CAD using IVOCT. Our search identified 8600 studies, with 629 included after initial screening and 39 studies included in the final systematic review after quality screening. Our findings indicate that most of the identified models are not currently suitable for clinical use, primarily due to methodological flaws and underlying biases. To address these issues, we provide recommendations to improve model quality and research practices to enhance the development of clinically useful AI products.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 4\",\"pages\":\"529-539\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)工具有望从血管内光学相干断层扫描(IVOCT)图像中快速准确地诊断冠状动脉疾病(CAD)。已经发表了许多论文,描述了用于不同诊断任务的基于人工智能的模型,但目前尚不清楚,哪些模型具有潜在的临床实用性并已得到适当验证。本系统综述考虑了2015年1月至2024年12月期间发表的文献,这些文献描述了使用IVOCT进行CAD人工智能诊断。我们的研究确定了8600项研究,其中629项研究在初始筛选后纳入,39项研究在质量筛选后纳入最终的系统评价。我们的研究结果表明,大多数确定的模型目前不适合临床使用,主要是由于方法缺陷和潜在的偏见。为了解决这些问题,我们提出了提高模型质量和研究实践的建议,以加强临床有用的人工智能产品的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review and recommendations for using artificial intelligence in intracoronary optical coherence tomography analysis.

Artificial intelligence (AI) tools hold great promise for the rapid and accurate diagnosis of coronary artery disease (CAD) from intravascular optical coherent tomography (IVOCT) images. Numerous papers have been published describing AI-based models for different diagnostic tasks, yet it remains unclear, which models have potential clinical utility and have been properly validated. This systematic review considered published literature between January 2015 and December 2024 describing AI-based diagnosis of CAD using IVOCT. Our search identified 8600 studies, with 629 included after initial screening and 39 studies included in the final systematic review after quality screening. Our findings indicate that most of the identified models are not currently suitable for clinical use, primarily due to methodological flaws and underlying biases. To address these issues, we provide recommendations to improve model quality and research practices to enhance the development of clinically useful AI products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信