基于全血转录组和人工智能的液体活检预测冠状动脉钙化:一项初步研究。

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-05-02 eCollection Date: 2025-07-01 DOI:10.1093/ehjdh/ztaf042
Rosana Poggio, Gaston A Rodriguez-Granillo, Florencia De Lillo, Alejandra Bibiana Rubilar, Sarah Y Garron-Arias, Nelba Pérez, Razan Hijazi, Claudia Solari, María Olivera-Mores, Soledad Rodriguez-Varela, Alan Möbbs, Estefanía Mancini, Ignacio Berdiñas, Alejandro La Greca, Carlos Luzzani, Santiago Miriuka
{"title":"基于全血转录组和人工智能的液体活检预测冠状动脉钙化:一项初步研究。","authors":"Rosana Poggio, Gaston A Rodriguez-Granillo, Florencia De Lillo, Alejandra Bibiana Rubilar, Sarah Y Garron-Arias, Nelba Pérez, Razan Hijazi, Claudia Solari, María Olivera-Mores, Soledad Rodriguez-Varela, Alan Möbbs, Estefanía Mancini, Ignacio Berdiñas, Alejandro La Greca, Carlos Luzzani, Santiago Miriuka","doi":"10.1093/ehjdh/ztaf042","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary objective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to predict coronary artery calcifications (CAC).</p><p><strong>Methods and results: </strong>A total of 196 subjects [men aged 40-70 years and women aged 50-70 years without known cardiovascular disease (CVD)] were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88-0.95) for predicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination compared with the transcriptomic model (AUC 0.79; <i>P</i> = 0.009), the clinical variables model (AUC 0.72; <i>P</i> < 0.001), and the CVD risk model (AUC 0.68; <i>P</i> < 0.001).</p><p><strong>Conclusion: </strong>In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust validation.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 4","pages":"587-594"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study.\",\"authors\":\"Rosana Poggio, Gaston A Rodriguez-Granillo, Florencia De Lillo, Alejandra Bibiana Rubilar, Sarah Y Garron-Arias, Nelba Pérez, Razan Hijazi, Claudia Solari, María Olivera-Mores, Soledad Rodriguez-Varela, Alan Möbbs, Estefanía Mancini, Ignacio Berdiñas, Alejandro La Greca, Carlos Luzzani, Santiago Miriuka\",\"doi\":\"10.1093/ehjdh/ztaf042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary objective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to predict coronary artery calcifications (CAC).</p><p><strong>Methods and results: </strong>A total of 196 subjects [men aged 40-70 years and women aged 50-70 years without known cardiovascular disease (CVD)] were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88-0.95) for predicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination compared with the transcriptomic model (AUC 0.79; <i>P</i> = 0.009), the clinical variables model (AUC 0.72; <i>P</i> < 0.001), and the CVD risk model (AUC 0.68; <i>P</i> < 0.001).</p><p><strong>Conclusion: </strong>In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust validation.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 4\",\"pages\":\"587-594\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:全血RNA表达可根据来自组织(包括血管壁)的信号进行调节。本研究的主要目的是探索使用人工智能(AI)分析的全血转录组预测冠状动脉钙化(CAC)的能力。方法和结果:共有196名受试者[男性40-70岁,女性50-70岁,无已知心血管疾病(CVD)]非连续入组,通过胸部计算机断层扫描进行CAC评估。分离全血RNA并测序。使用临床和转录组学变量作为不同的特征来训练不同的人工智能模型,以识别CAC的存在(Agatston评分>0)。最后,我们比较了这些模型的预测性能。CAC患病率为43.9%。结合转录组数据、年龄、性别、体重指数、吸烟状况、糖尿病和高胆固醇血症的联合AI模型,预测CAC存在的曲线下面积(AUC)为0.92 (95% CI, 0.88-0.95),灵敏度为92%,特异性为80%,阳性预测值为81%,阴性预测值为91%,总体准确率为86%。与转录组学模型相比,联合AI模型的识别能力显著提高(AUC 0.79;P = 0.009),临床变量模型(AUC 0.72;P < 0.001), CVD风险模型(AUC 0.68;P < 0.001)。结论:在这项初步研究中,将全血转录组数据与临床危险因素相结合的人工智能模型显示出预测CAC的能力,比临床模型提供了更高的价值。需要进一步的研究来获得更可靠的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study.

Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study.

Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study.

Liquid biopsy based on whole blood transcriptome and artificial intelligence for the prediction of coronary artery calcification: a pilot study.

Aims: Whole blood RNA expression is modulated in response to signals from tissues, including the vessel wall. The primary objective of this study was to explore the ability of whole blood transcriptomes, analysed using artificial intelligence (AI), to predict coronary artery calcifications (CAC).

Methods and results: A total of 196 subjects [men aged 40-70 years and women aged 50-70 years without known cardiovascular disease (CVD)] were non-consecutively enrolled for CAC assessment via chest computed tomography. Whole blood RNA was isolated and sequenced. Different AI models were trained using clinical and transcriptomic variables as distinctive features to identify the presence of CAC (Agatston score >0). Finally, we compared the predictive performance of these models. The prevalence of CAC was 43.9%. The combined AI model, incorporating transcriptome data along with age, sex, body mass index, smoking status, diabetes, and hypercholesterolaemia, achieved an area under the curve (AUC) of 0.92 (95% CI, 0.88-0.95) for predicting the presence of CAC, with a sensitivity of 92%, specificity of 80%, positive predictive value of 81%, negative predictive value of 91%, and an overall accuracy of 86%. The combined AI model demonstrated significantly improved discrimination compared with the transcriptomic model (AUC 0.79; P = 0.009), the clinical variables model (AUC 0.72; P < 0.001), and the CVD risk model (AUC 0.68; P < 0.001).

Conclusion: In this pilot study, an AI model integrating whole blood transcriptome data with clinical risk factors demonstrated the ability to predict CAC, providing incremental value over clinical models. Further studies are needed to achieve more robust validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信