人体跳跃的力学和运动控制的补充,由姿态相位地面向下摄动发现。

IF 3 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Aida Mohammadi Nejad Rashty, Maziar Ahmad Sharbafi, André Seyfarth
{"title":"人体跳跃的力学和运动控制的补充,由姿态相位地面向下摄动发现。","authors":"Aida Mohammadi Nejad Rashty, Maziar Ahmad Sharbafi, André Seyfarth","doi":"10.1088/1748-3190/adf385","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance our understanding of human locomotion's adaptability to ground-level downward perturbations, focusing on hopping at preferred frequencies. By categorizing perturbations into early (ESP), mid (MSP), and late (LSP) stance phase and by analyzing the resulting biomechanical responses, we develop and validate a model that accurately replicates and predicts these behaviors. The spring-loaded inverted pendulum (SLIP) model, while capturing basic hopping dynamics, was inadequate for explaining subjects' responses. We introduced the sensory modulated spring (SMS) model, incorporating force, length, and velocity feedback (VFB), with gains optimized through genetic algorithms for enhanced accuracy. Our findings indicate distinct response patterns based on perturbation timing, highlighting the complexity of human adaptive mechanisms. The SMS model outperformed the SLIP model in replicating normal hopping behavior, while length and force feedback enable stable and economic human-like hopping, and VFB enables replicating humans' transient response to perturbation. Inspired by energy flow and behavioral changes in the experimental data, we introduced an extended SMS model with event-based adaptation at maximum compression and apex moment. The capability of this model to predict human perturbation recovery in hopping is demonstrated through systematic evaluation, including stability analyses and assessment of transient and steady-state responses. This study advances template-based modeling by integrating high-level reflexes besides local sensory feedback, offering a novel tool for understanding the inherent adaptability of human locomotion. The introduced adaptive model provides a novel framework for future research on adjustments to environmental challenges, with potential applications in designing effective rehabilitation protocols and assistive locomotion devices.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recruitment of mechanics and motor control in human hopping, discovered by stance phase ground-level downward perturbations.\",\"authors\":\"Aida Mohammadi Nejad Rashty, Maziar Ahmad Sharbafi, André Seyfarth\",\"doi\":\"10.1088/1748-3190/adf385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance our understanding of human locomotion's adaptability to ground-level downward perturbations, focusing on hopping at preferred frequencies. By categorizing perturbations into early (ESP), mid (MSP), and late (LSP) stance phase and by analyzing the resulting biomechanical responses, we develop and validate a model that accurately replicates and predicts these behaviors. The spring-loaded inverted pendulum (SLIP) model, while capturing basic hopping dynamics, was inadequate for explaining subjects' responses. We introduced the sensory modulated spring (SMS) model, incorporating force, length, and velocity feedback (VFB), with gains optimized through genetic algorithms for enhanced accuracy. Our findings indicate distinct response patterns based on perturbation timing, highlighting the complexity of human adaptive mechanisms. The SMS model outperformed the SLIP model in replicating normal hopping behavior, while length and force feedback enable stable and economic human-like hopping, and VFB enables replicating humans' transient response to perturbation. Inspired by energy flow and behavioral changes in the experimental data, we introduced an extended SMS model with event-based adaptation at maximum compression and apex moment. The capability of this model to predict human perturbation recovery in hopping is demonstrated through systematic evaluation, including stability analyses and assessment of transient and steady-state responses. This study advances template-based modeling by integrating high-level reflexes besides local sensory feedback, offering a novel tool for understanding the inherent adaptability of human locomotion. The introduced adaptive model provides a novel framework for future research on adjustments to environmental challenges, with potential applications in designing effective rehabilitation protocols and assistive locomotion devices.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/adf385\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adf385","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在增强我们对人类运动对地面向下扰动的适应性的理解,重点研究在首选频率下的跳跃。通过将扰动分为早期(ESP)、中期(MSP)和晚期(LSP)三个阶段,并分析由此产生的生物力学响应,我们开发并验证了一个准确复制和预测这些行为的模型。弹簧加载倒立摆(SLIP)模型虽然捕获了基本的跳跃动力学,但不足以解释受试者的反应。我们介绍了传感器调制弹簧(SMS)模型,该模型结合了力、长度和速度反馈,并通过遗传算法优化了增益,以提高精度。我们的研究结果表明,基于扰动时间的不同反应模式,突出了人类适应机制的复杂性。SMS模型在模拟正常跳跃行为方面优于SLIP模型,而长度和力反馈可以实现稳定和经济的类人跳跃,速度反馈可以模拟人类对扰动的瞬态响应。 ;在实验数据的能量流和行为变化的启发下,我们引入了一个扩展的SMS模型,在最大压缩和顶点时刻具有基于事件的自适应。该模型通过系统评估,包括稳定性分析和瞬态和稳态响应评估,证明了该模型预测人类跳跃扰动恢复的能力。本研究通过整合局部感觉反馈之外的高级反射,推进了基于模板的建模,为理解人类运动的内在适应性提供了一种新的工具。引入的自适应模型为未来研究适应环境挑战提供了一个新的框架,在设计有效的康复方案和辅助运动装置方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recruitment of mechanics and motor control in human hopping, discovered by stance phase ground-level downward perturbations.

This study aims to enhance our understanding of human locomotion's adaptability to ground-level downward perturbations, focusing on hopping at preferred frequencies. By categorizing perturbations into early (ESP), mid (MSP), and late (LSP) stance phase and by analyzing the resulting biomechanical responses, we develop and validate a model that accurately replicates and predicts these behaviors. The spring-loaded inverted pendulum (SLIP) model, while capturing basic hopping dynamics, was inadequate for explaining subjects' responses. We introduced the sensory modulated spring (SMS) model, incorporating force, length, and velocity feedback (VFB), with gains optimized through genetic algorithms for enhanced accuracy. Our findings indicate distinct response patterns based on perturbation timing, highlighting the complexity of human adaptive mechanisms. The SMS model outperformed the SLIP model in replicating normal hopping behavior, while length and force feedback enable stable and economic human-like hopping, and VFB enables replicating humans' transient response to perturbation. Inspired by energy flow and behavioral changes in the experimental data, we introduced an extended SMS model with event-based adaptation at maximum compression and apex moment. The capability of this model to predict human perturbation recovery in hopping is demonstrated through systematic evaluation, including stability analyses and assessment of transient and steady-state responses. This study advances template-based modeling by integrating high-level reflexes besides local sensory feedback, offering a novel tool for understanding the inherent adaptability of human locomotion. The introduced adaptive model provides a novel framework for future research on adjustments to environmental challenges, with potential applications in designing effective rehabilitation protocols and assistive locomotion devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信