青蒿素对小鼠和裸鼹鼠的感觉神经元有体外致敏作用。

IF 2.2 4区 心理学 Q3 BEHAVIORAL SCIENCES
Lanhui Qiu, Ewan St John Smith
{"title":"青蒿素对小鼠和裸鼹鼠的感觉神经元有体外致敏作用。","authors":"Lanhui Qiu, Ewan St John Smith","doi":"10.1007/s00359-025-01752-7","DOIUrl":null,"url":null,"abstract":"<p><p>The naked mole-rat (NMR, Heterocephalus glaber) is a subterranean rodent that exhibits a range of unusual physiological traits, including diminished inflammatory pain. For example, nerve growth factor (NGF), a key inflammatory mediator, fails to induce sensitization of sensory neurons and thermal hyperalgesia in NMRs. This lack of NGF-induced neuronal sensitization and thermal hyperalgesia results from hypofunctional signaling of the NGF receptor, tropomyosin receptor kinase A (TrkA). Like NGF-TrkA signaling, the neurotrophic factor artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, is implicated in mediating inflammatory pain through its receptor, GDNF family receptor α3 (GFRα3), which is expressed by a subset of dorsal root ganglia (DRG) sensory neurons. Here we investigated GFRα3 expression in DRG neurons of mice and NMRs, as well as measuring the impact of artemin on DRG sensory neuron function in both species in vitro. Using immunohistochemistry, we observed a similar abundance of GFRα3 in mouse and NMR DRG sensory neurons, high coexpression with the transient receptor potential vanilloid 1 (TRPV1) ion channel suggesting that these neurons are nociceptive neurons. Using in vitro electrophysiology to record from cultured DRG sensory neurons, we observed that artemin induced depolarization of the resting membrane potential and decreased the rheobase in both species, as well as diminishing the degree of TRPV1 desensitization to multiple capsaicin stimuli. Overall, results indicate that artemin similarly sensitizes sensory neurons in both mice and NMRs, future in vivo studies being required to confirm if the conserved in vitro sensitization also occurs in vivo.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artemin sensitises mouse (Mus musculus) and naked mole-rat (Heterocephalus glaber) sensory neurons in vitro.\",\"authors\":\"Lanhui Qiu, Ewan St John Smith\",\"doi\":\"10.1007/s00359-025-01752-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The naked mole-rat (NMR, Heterocephalus glaber) is a subterranean rodent that exhibits a range of unusual physiological traits, including diminished inflammatory pain. For example, nerve growth factor (NGF), a key inflammatory mediator, fails to induce sensitization of sensory neurons and thermal hyperalgesia in NMRs. This lack of NGF-induced neuronal sensitization and thermal hyperalgesia results from hypofunctional signaling of the NGF receptor, tropomyosin receptor kinase A (TrkA). Like NGF-TrkA signaling, the neurotrophic factor artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, is implicated in mediating inflammatory pain through its receptor, GDNF family receptor α3 (GFRα3), which is expressed by a subset of dorsal root ganglia (DRG) sensory neurons. Here we investigated GFRα3 expression in DRG neurons of mice and NMRs, as well as measuring the impact of artemin on DRG sensory neuron function in both species in vitro. Using immunohistochemistry, we observed a similar abundance of GFRα3 in mouse and NMR DRG sensory neurons, high coexpression with the transient receptor potential vanilloid 1 (TRPV1) ion channel suggesting that these neurons are nociceptive neurons. Using in vitro electrophysiology to record from cultured DRG sensory neurons, we observed that artemin induced depolarization of the resting membrane potential and decreased the rheobase in both species, as well as diminishing the degree of TRPV1 desensitization to multiple capsaicin stimuli. Overall, results indicate that artemin similarly sensitizes sensory neurons in both mice and NMRs, future in vivo studies being required to confirm if the conserved in vitro sensitization also occurs in vivo.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-025-01752-7\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01752-7","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

裸鼹鼠(NMR, Heterocephalus glaber)是一种地下啮齿动物,表现出一系列不寻常的生理特征,包括炎症性疼痛减轻。例如,神经生长因子(NGF),一种关键的炎症介质,在NMRs中不能诱导感觉神经元致敏和热痛觉过敏。这种缺乏NGF诱导的神经元致敏和热痛觉过敏是由于NGF受体原肌球蛋白受体激酶A (TrkA)信号传导功能低下所致。与NGF-TrkA信号一样,神经营养因子阿耳特明(artemin)作为神经胶质细胞系来源的神经营养因子(GDNF)家族的一员,通过其受体GDNF家族受体α3 (GFRα3)介导炎症性疼痛,该受体由背根神经节(DRG)感觉神经元亚群表达。本实验研究了GFRα3在小鼠和NMRs DRG神经元中的表达,并在体外测定了青蒿素对两种动物DRG感觉神经元功能的影响。通过免疫组化,我们在小鼠和核磁共振DRG感觉神经元中观察到相似的GFRα3丰度,与瞬时受体电位香草样蛋白1 (TRPV1)离子通道高共表达,提示这些神经元为伤害神经元。通过体外电生理记录培养的DRG感觉神经元,我们观察到青蒿素在两种动物中诱导静息膜电位去极化,降低了变性酶,并降低了TRPV1对多种辣椒素刺激的脱敏程度。总体而言,研究结果表明,青蒿素对小鼠和NMRs的感觉神经元具有相似的致敏作用,需要进一步的体内研究来证实这种保守的体外致敏作用是否也发生在体内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artemin sensitises mouse (Mus musculus) and naked mole-rat (Heterocephalus glaber) sensory neurons in vitro.

The naked mole-rat (NMR, Heterocephalus glaber) is a subterranean rodent that exhibits a range of unusual physiological traits, including diminished inflammatory pain. For example, nerve growth factor (NGF), a key inflammatory mediator, fails to induce sensitization of sensory neurons and thermal hyperalgesia in NMRs. This lack of NGF-induced neuronal sensitization and thermal hyperalgesia results from hypofunctional signaling of the NGF receptor, tropomyosin receptor kinase A (TrkA). Like NGF-TrkA signaling, the neurotrophic factor artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, is implicated in mediating inflammatory pain through its receptor, GDNF family receptor α3 (GFRα3), which is expressed by a subset of dorsal root ganglia (DRG) sensory neurons. Here we investigated GFRα3 expression in DRG neurons of mice and NMRs, as well as measuring the impact of artemin on DRG sensory neuron function in both species in vitro. Using immunohistochemistry, we observed a similar abundance of GFRα3 in mouse and NMR DRG sensory neurons, high coexpression with the transient receptor potential vanilloid 1 (TRPV1) ion channel suggesting that these neurons are nociceptive neurons. Using in vitro electrophysiology to record from cultured DRG sensory neurons, we observed that artemin induced depolarization of the resting membrane potential and decreased the rheobase in both species, as well as diminishing the degree of TRPV1 desensitization to multiple capsaicin stimuli. Overall, results indicate that artemin similarly sensitizes sensory neurons in both mice and NMRs, future in vivo studies being required to confirm if the conserved in vitro sensitization also occurs in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信