基于小波压缩的近红外和SWIR高光谱数据尺度保持方法。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-07-01 Epub Date: 2025-07-23 DOI:10.1117/1.JMI.12.4.044503
Hridoy Biswas, Rui Tang, Shamim Mollah, Mikhail Y Berezin
{"title":"基于小波压缩的近红外和SWIR高光谱数据尺度保持方法。","authors":"Hridoy Biswas, Rui Tang, Shamim Mollah, Mikhail Y Berezin","doi":"10.1117/1.JMI.12.4.044503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Hyperspectral imaging (HSI) collects detailed spectral information across hundreds of narrow bands, providing valuable datasets for applications such as medical diagnostics. However, the large size of HSI datasets, often exceeding several gigabytes, creates significant challenges in data transmission, storage, and processing. We aim to develop a wavelet-based compression method that addresses these challenges while preserving the integrity and quality of spectral information.</p><p><strong>Approach: </strong>The proposed method applies wavelet transforms to the spectral dimension of hyperspectral data in three steps: (1) wavelet transformation for dimensionality reduction, (2) spectral cropping to eliminate low-intensity bands, and (3) scale matching to maintain accurate wavelength mapping. Daubechies wavelets were used to achieve up to 32× compression while ensuring spectral fidelity and spatial feature retention.</p><p><strong>Results: </strong>The wavelet-based method achieved up to 32× compression, corresponding to a 96.88% reduction in data size without significant loss of important data. Unlike principal component analysis and independent component analysis, the method preserved the original wavelength scale, enabling straightforward spectral interpretation. In addition, the compressed data exhibited minimal loss in spatial features, with improvements in contrast and noise reduction compared with spectral binning.</p><p><strong>Conclusions: </strong>We demonstrate that wavelet-based compression is an effective solution for managing large HSI datasets in medical imaging. The method preserves critical spectral and spatial information and therefore facilitates efficient data storage and processing, providing a way for the practical integration of HSI technology in clinical applications.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 4","pages":"044503"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wavelet-based compression method for scale-preserving in VNIR and SWIR hyperspectral data.\",\"authors\":\"Hridoy Biswas, Rui Tang, Shamim Mollah, Mikhail Y Berezin\",\"doi\":\"10.1117/1.JMI.12.4.044503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Hyperspectral imaging (HSI) collects detailed spectral information across hundreds of narrow bands, providing valuable datasets for applications such as medical diagnostics. However, the large size of HSI datasets, often exceeding several gigabytes, creates significant challenges in data transmission, storage, and processing. We aim to develop a wavelet-based compression method that addresses these challenges while preserving the integrity and quality of spectral information.</p><p><strong>Approach: </strong>The proposed method applies wavelet transforms to the spectral dimension of hyperspectral data in three steps: (1) wavelet transformation for dimensionality reduction, (2) spectral cropping to eliminate low-intensity bands, and (3) scale matching to maintain accurate wavelength mapping. Daubechies wavelets were used to achieve up to 32× compression while ensuring spectral fidelity and spatial feature retention.</p><p><strong>Results: </strong>The wavelet-based method achieved up to 32× compression, corresponding to a 96.88% reduction in data size without significant loss of important data. Unlike principal component analysis and independent component analysis, the method preserved the original wavelength scale, enabling straightforward spectral interpretation. In addition, the compressed data exhibited minimal loss in spatial features, with improvements in contrast and noise reduction compared with spectral binning.</p><p><strong>Conclusions: </strong>We demonstrate that wavelet-based compression is an effective solution for managing large HSI datasets in medical imaging. The method preserves critical spectral and spatial information and therefore facilitates efficient data storage and processing, providing a way for the practical integration of HSI technology in clinical applications.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 4\",\"pages\":\"044503\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.4.044503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.4.044503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:高光谱成像(HSI)收集数百个窄带的详细光谱信息,为医疗诊断等应用提供有价值的数据集。然而,大型HSI数据集(通常超过几gb)在数据传输、存储和处理方面带来了重大挑战。我们的目标是开发一种基于小波的压缩方法来解决这些挑战,同时保持光谱信息的完整性和质量。方法:该方法将小波变换应用于高光谱数据的光谱维数,分三步进行:(1)小波变换降维;(2)光谱裁剪去除低强度波段;(3)尺度匹配保持准确的波长映射。Daubechies小波用于实现高达32倍的压缩,同时确保光谱保真度和空间特征保留。结果:基于小波的方法实现了高达32倍的压缩,相当于减少了96.88%的数据大小,而没有明显的重要数据丢失。与主成分分析和独立成分分析不同,该方法保留了原始波长尺度,可以直接进行光谱解释。此外,压缩后的数据在空间特征上的损失最小,与光谱分形相比,在对比度和降噪方面有所改善。结论:我们证明基于小波的压缩是管理医学成像中大型HSI数据集的有效解决方案。该方法保留了关键的光谱和空间信息,从而促进了有效的数据存储和处理,为HSI技术在临床应用中的实际集成提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-based compression method for scale-preserving in VNIR and SWIR hyperspectral data.

Purpose: Hyperspectral imaging (HSI) collects detailed spectral information across hundreds of narrow bands, providing valuable datasets for applications such as medical diagnostics. However, the large size of HSI datasets, often exceeding several gigabytes, creates significant challenges in data transmission, storage, and processing. We aim to develop a wavelet-based compression method that addresses these challenges while preserving the integrity and quality of spectral information.

Approach: The proposed method applies wavelet transforms to the spectral dimension of hyperspectral data in three steps: (1) wavelet transformation for dimensionality reduction, (2) spectral cropping to eliminate low-intensity bands, and (3) scale matching to maintain accurate wavelength mapping. Daubechies wavelets were used to achieve up to 32× compression while ensuring spectral fidelity and spatial feature retention.

Results: The wavelet-based method achieved up to 32× compression, corresponding to a 96.88% reduction in data size without significant loss of important data. Unlike principal component analysis and independent component analysis, the method preserved the original wavelength scale, enabling straightforward spectral interpretation. In addition, the compressed data exhibited minimal loss in spatial features, with improvements in contrast and noise reduction compared with spectral binning.

Conclusions: We demonstrate that wavelet-based compression is an effective solution for managing large HSI datasets in medical imaging. The method preserves critical spectral and spatial information and therefore facilitates efficient data storage and processing, providing a way for the practical integration of HSI technology in clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信