Joyce Kumah, Eric Kofi Doe, Benedicta Yayra Fosu-Mensah, Benjamin Denkyira Ofori, Millicent A S Kwawu, Ebenezer Boahen, Doreen Larkailey Lartey, Sampson D D P Dordaa, Christopher Gordon
{"title":"城市高温对加纳大阿克拉都会区蔬菜中农药残留积累的影响。","authors":"Joyce Kumah, Eric Kofi Doe, Benedicta Yayra Fosu-Mensah, Benjamin Denkyira Ofori, Millicent A S Kwawu, Ebenezer Boahen, Doreen Larkailey Lartey, Sampson D D P Dordaa, Christopher Gordon","doi":"10.3390/jox15040103","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with 66 farmers across three land surface temperatures: low (Atomic, <i>n</i> = 22), moderate (Ashaiman, <i>n</i> = 22), and high (Korle-Bu, <i>n</i> = 22). Pesticide residue concentrations were assessed using an ANOVA to examine spatial variations across sites. The results indicate a strong correlation between high land surface temperatures and pesticide residue accumulation, with lettuce recording significantly (<i>p</i> < 0.05) higher PR levels than cabbage. Several pesticides, including carbendazim (CBZ), Imidacloprid (IMI), Thiamethoxam (TMX), and Chlorpyrifos (CHL), exceeded the maximum residue limits (MRLs) set by the World Health Organization (WHO) and the European Union (EU) at moderate and high-temperature sites. carbendazim was the dominant pesticide detected, with a concentration of 19.0 mg/kg in lettuce, which far exceeded its maximum residue limit (MRL) of 0.10 mg/kg across all study sites. Statistical analyses (PERMANOVA) confirmed that land surface temperatures and pesticide types significantly influenced the PR concentrations. Public health risk assessments indicate that children are more vulnerable to pesticide exposure than adults. The toxicity hazard quotient (THQ) for organophosphate pesticides, particularly CHL and Dimethoate (DMT), exceeded safe thresholds at moderate and high-temperature sites.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286249/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of High Urban Temperatures on Pesticide Residues Accumulation in Vegetables Grown in the Greater Accra Metropolitan Area of Ghana.\",\"authors\":\"Joyce Kumah, Eric Kofi Doe, Benedicta Yayra Fosu-Mensah, Benjamin Denkyira Ofori, Millicent A S Kwawu, Ebenezer Boahen, Doreen Larkailey Lartey, Sampson D D P Dordaa, Christopher Gordon\",\"doi\":\"10.3390/jox15040103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with 66 farmers across three land surface temperatures: low (Atomic, <i>n</i> = 22), moderate (Ashaiman, <i>n</i> = 22), and high (Korle-Bu, <i>n</i> = 22). Pesticide residue concentrations were assessed using an ANOVA to examine spatial variations across sites. The results indicate a strong correlation between high land surface temperatures and pesticide residue accumulation, with lettuce recording significantly (<i>p</i> < 0.05) higher PR levels than cabbage. Several pesticides, including carbendazim (CBZ), Imidacloprid (IMI), Thiamethoxam (TMX), and Chlorpyrifos (CHL), exceeded the maximum residue limits (MRLs) set by the World Health Organization (WHO) and the European Union (EU) at moderate and high-temperature sites. carbendazim was the dominant pesticide detected, with a concentration of 19.0 mg/kg in lettuce, which far exceeded its maximum residue limit (MRL) of 0.10 mg/kg across all study sites. Statistical analyses (PERMANOVA) confirmed that land surface temperatures and pesticide types significantly influenced the PR concentrations. Public health risk assessments indicate that children are more vulnerable to pesticide exposure than adults. The toxicity hazard quotient (THQ) for organophosphate pesticides, particularly CHL and Dimethoate (DMT), exceeded safe thresholds at moderate and high-temperature sites.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15040103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The Impact of High Urban Temperatures on Pesticide Residues Accumulation in Vegetables Grown in the Greater Accra Metropolitan Area of Ghana.
This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with 66 farmers across three land surface temperatures: low (Atomic, n = 22), moderate (Ashaiman, n = 22), and high (Korle-Bu, n = 22). Pesticide residue concentrations were assessed using an ANOVA to examine spatial variations across sites. The results indicate a strong correlation between high land surface temperatures and pesticide residue accumulation, with lettuce recording significantly (p < 0.05) higher PR levels than cabbage. Several pesticides, including carbendazim (CBZ), Imidacloprid (IMI), Thiamethoxam (TMX), and Chlorpyrifos (CHL), exceeded the maximum residue limits (MRLs) set by the World Health Organization (WHO) and the European Union (EU) at moderate and high-temperature sites. carbendazim was the dominant pesticide detected, with a concentration of 19.0 mg/kg in lettuce, which far exceeded its maximum residue limit (MRL) of 0.10 mg/kg across all study sites. Statistical analyses (PERMANOVA) confirmed that land surface temperatures and pesticide types significantly influenced the PR concentrations. Public health risk assessments indicate that children are more vulnerable to pesticide exposure than adults. The toxicity hazard quotient (THQ) for organophosphate pesticides, particularly CHL and Dimethoate (DMT), exceeded safe thresholds at moderate and high-temperature sites.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.