Bárbara S Diogo, Daniela Rebelo, Sara C Antunes, Sara Rodrigues
{"title":"新兴污染物的代谢成本:斑马鱼胚胎的细胞能量分配。","authors":"Bárbara S Diogo, Daniela Rebelo, Sara C Antunes, Sara Rodrigues","doi":"10.3390/jox15040099","DOIUrl":null,"url":null,"abstract":"<p><p>The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic ecosystems. This study aimed to evaluate the impact of emerging contaminants already listed as a priority for monitoring in freshwater ecosystems, namely sulfamethoxazole (0.156-2.50 mg/L), trimethoprim (25.0-400 mg/L), 4-chloroaniline (5.21-20.0 mg/L), and 3,4-dichloroaniline (0.38-4.00 mg/L), on the CEA of <i>D. rerio</i> embryos. A standard fish embryo toxicity test was conducted, and an adaptation of the allometric scaling approach was developed through the relationship between the size and the fresh weight of the embryos. All the compounds affected the fractions of the energy reserves (total carbohydrate, lipid, and protein contents) differently, with carbohydrates being the predominant energy fraction and the most responsive indicator. Although the energy consumed showed no significant changes, the CEA was notably altered after exposure to all the contaminants, indicating a direct connection to shifts in the available energy. The CEA alterations may indicate a reallocation of energy toward detoxification, combating the stress of contaminant exposure. Energy allocation biomarkers provide a comprehensive assessment of an organism's physiological state, which is essential for evaluating emerging contaminants' impacts, safeguarding aquatic ecosystems, and shaping effective environmental policies.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic Costs of Emerging Contaminants: Cellular Energy Allocation in Zebrafish Embryos.\",\"authors\":\"Bárbara S Diogo, Daniela Rebelo, Sara C Antunes, Sara Rodrigues\",\"doi\":\"10.3390/jox15040099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic ecosystems. This study aimed to evaluate the impact of emerging contaminants already listed as a priority for monitoring in freshwater ecosystems, namely sulfamethoxazole (0.156-2.50 mg/L), trimethoprim (25.0-400 mg/L), 4-chloroaniline (5.21-20.0 mg/L), and 3,4-dichloroaniline (0.38-4.00 mg/L), on the CEA of <i>D. rerio</i> embryos. A standard fish embryo toxicity test was conducted, and an adaptation of the allometric scaling approach was developed through the relationship between the size and the fresh weight of the embryos. All the compounds affected the fractions of the energy reserves (total carbohydrate, lipid, and protein contents) differently, with carbohydrates being the predominant energy fraction and the most responsive indicator. Although the energy consumed showed no significant changes, the CEA was notably altered after exposure to all the contaminants, indicating a direct connection to shifts in the available energy. The CEA alterations may indicate a reallocation of energy toward detoxification, combating the stress of contaminant exposure. Energy allocation biomarkers provide a comprehensive assessment of an organism's physiological state, which is essential for evaluating emerging contaminants' impacts, safeguarding aquatic ecosystems, and shaping effective environmental policies.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15040099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Metabolic Costs of Emerging Contaminants: Cellular Energy Allocation in Zebrafish Embryos.
The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic ecosystems. This study aimed to evaluate the impact of emerging contaminants already listed as a priority for monitoring in freshwater ecosystems, namely sulfamethoxazole (0.156-2.50 mg/L), trimethoprim (25.0-400 mg/L), 4-chloroaniline (5.21-20.0 mg/L), and 3,4-dichloroaniline (0.38-4.00 mg/L), on the CEA of D. rerio embryos. A standard fish embryo toxicity test was conducted, and an adaptation of the allometric scaling approach was developed through the relationship between the size and the fresh weight of the embryos. All the compounds affected the fractions of the energy reserves (total carbohydrate, lipid, and protein contents) differently, with carbohydrates being the predominant energy fraction and the most responsive indicator. Although the energy consumed showed no significant changes, the CEA was notably altered after exposure to all the contaminants, indicating a direct connection to shifts in the available energy. The CEA alterations may indicate a reallocation of energy toward detoxification, combating the stress of contaminant exposure. Energy allocation biomarkers provide a comprehensive assessment of an organism's physiological state, which is essential for evaluating emerging contaminants' impacts, safeguarding aquatic ecosystems, and shaping effective environmental policies.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.