{"title":"编目可操作的药物基因组变异印度临床实践:范围审查。","authors":"Sacheta Sudhendra Kulkarni, Venkatesh R, Anuradha Das, Gayatri Rangarajan Iyer","doi":"10.3390/jox15040101","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pharmacogenomics (PGx), a pivotal branch of personalized medicine, studies how genetic variations influence drug responses. Despite its transformative potential, the adoption of PGx in Indian clinical practice faces challenges, such as the lack of population-specific data, evidence-based guidelines, and complexities in interpreting genomic reports. Comprehensive datasets tailored to Indian patients are essential to facilitate the integration of PGx into clinical settings.</p><p><strong>Methodology: </strong>The study collates pharmacogenomic data from multiple sources, including essential drugs listed by the World Health Organization (WHO), drugs used in neonatal intensive care units (NICUs), minimum sets of alleles recommended by the Association for Molecular Pathology (AMP), and catalogs the allele frequencies from the IndiGenomes database to address gaps in actionable PGx for the Indian population. Curated datasets were used to identify pharmacogenomic variants relevant to clinical practice.</p><p><strong>Results: </strong>Overall, 24 prime genes are essential for the outcomes of 57 drugs. In adults, 18 genes influence the metabolism of 44 drugs whereas, in pediatric populations, genotypes of 18 genes significantly impact the metabolism of 18 drugs. Two over-the-counter drugs with actionable PGx variants were identified: ibuprofen and omeprazole. These findings emphasize the clinical relevance of PGx for commonly used drugs, underscoring the need for population-specific data.</p><p><strong>Conclusions: </strong>As the data of several Indian human genome projects become available, an overarching need exists to establish and regulate the dynamic actionable PGx in Indian clinical practice. This will facilitate the integration of pharmacogenomic data into healthcare, enabling effective and personalized drug therapies.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286129/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cataloging Actionable Pharmacogenomic Variants for Indian Clinical Practice: A Scoping Review.\",\"authors\":\"Sacheta Sudhendra Kulkarni, Venkatesh R, Anuradha Das, Gayatri Rangarajan Iyer\",\"doi\":\"10.3390/jox15040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pharmacogenomics (PGx), a pivotal branch of personalized medicine, studies how genetic variations influence drug responses. Despite its transformative potential, the adoption of PGx in Indian clinical practice faces challenges, such as the lack of population-specific data, evidence-based guidelines, and complexities in interpreting genomic reports. Comprehensive datasets tailored to Indian patients are essential to facilitate the integration of PGx into clinical settings.</p><p><strong>Methodology: </strong>The study collates pharmacogenomic data from multiple sources, including essential drugs listed by the World Health Organization (WHO), drugs used in neonatal intensive care units (NICUs), minimum sets of alleles recommended by the Association for Molecular Pathology (AMP), and catalogs the allele frequencies from the IndiGenomes database to address gaps in actionable PGx for the Indian population. Curated datasets were used to identify pharmacogenomic variants relevant to clinical practice.</p><p><strong>Results: </strong>Overall, 24 prime genes are essential for the outcomes of 57 drugs. In adults, 18 genes influence the metabolism of 44 drugs whereas, in pediatric populations, genotypes of 18 genes significantly impact the metabolism of 18 drugs. Two over-the-counter drugs with actionable PGx variants were identified: ibuprofen and omeprazole. These findings emphasize the clinical relevance of PGx for commonly used drugs, underscoring the need for population-specific data.</p><p><strong>Conclusions: </strong>As the data of several Indian human genome projects become available, an overarching need exists to establish and regulate the dynamic actionable PGx in Indian clinical practice. This will facilitate the integration of pharmacogenomic data into healthcare, enabling effective and personalized drug therapies.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Cataloging Actionable Pharmacogenomic Variants for Indian Clinical Practice: A Scoping Review.
Background: Pharmacogenomics (PGx), a pivotal branch of personalized medicine, studies how genetic variations influence drug responses. Despite its transformative potential, the adoption of PGx in Indian clinical practice faces challenges, such as the lack of population-specific data, evidence-based guidelines, and complexities in interpreting genomic reports. Comprehensive datasets tailored to Indian patients are essential to facilitate the integration of PGx into clinical settings.
Methodology: The study collates pharmacogenomic data from multiple sources, including essential drugs listed by the World Health Organization (WHO), drugs used in neonatal intensive care units (NICUs), minimum sets of alleles recommended by the Association for Molecular Pathology (AMP), and catalogs the allele frequencies from the IndiGenomes database to address gaps in actionable PGx for the Indian population. Curated datasets were used to identify pharmacogenomic variants relevant to clinical practice.
Results: Overall, 24 prime genes are essential for the outcomes of 57 drugs. In adults, 18 genes influence the metabolism of 44 drugs whereas, in pediatric populations, genotypes of 18 genes significantly impact the metabolism of 18 drugs. Two over-the-counter drugs with actionable PGx variants were identified: ibuprofen and omeprazole. These findings emphasize the clinical relevance of PGx for commonly used drugs, underscoring the need for population-specific data.
Conclusions: As the data of several Indian human genome projects become available, an overarching need exists to establish and regulate the dynamic actionable PGx in Indian clinical practice. This will facilitate the integration of pharmacogenomic data into healthcare, enabling effective and personalized drug therapies.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.