{"title":"鸟分枝杆菌复杂肺部疾病的当前和新兴治疗策略:叙述性回顾。","authors":"Chiwook Chung","doi":"10.12771/emj.2025.00080","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Mycobacterium avium</i> complex (MAC), comprising <i>M. avium</i> and <i>M. intracellulare</i>, constitutes the predominant cause of nontuberculous mycobacterial pulmonary disease (NTM-PD) in Korea, followed by the <i>M. abscessus</i> complex. Its global prevalence is increasing, as shown by a marked rise in Korea from 11.4 to 56.7 per 100,000 individuals between 2010 and 2021, surpassing the incidence of tuberculosis. Among the older adult population (aged ≥65 years), the prevalence escalated from 41.9 to 163.1 per 100,000, accounting for 47.6% of cases by 2021. Treatment should be individualized based on prognostic indicators, including cavitary disease, low body mass index, and positive sputum smears for acid-fast bacilli. Current therapeutic guidelines recommend a 3-drug regimen-consisting of a macrolide, rifampin, and ethambutol-administered for a minimum of 12 months following culture conversion. Nevertheless, treatment success rates are only roughly 60%, and over 30% of patients experience recurrence. This is often attributable to reinfection rather than relapse. Antimicrobial susceptibility testing for clarithromycin and amikacin is essential, as resistance significantly worsens prognosis. Ethambutol plays a crucial role in preventing the development of macrolide resistance, whereas the inclusion of rifampin remains a subject of ongoing debate. Emerging therapeutic strategies suggest daily dosing for milder cases, increased azithromycin dosing, and the substitution of rifampin with clofazimine in severe presentations. Surgical resection achieves a notable sputum conversion rate of approximately 93% in eligible candidates. For refractory MAC-PD, adjunctive therapy with amikacin is advised, coupled with strategies to reduce environmental exposure. Despite advancements in therapeutic approaches, patient outcomes remain suboptimal, highlighting the urgent need for novel interventions.</p>","PeriodicalId":41392,"journal":{"name":"Ewha Medical Journal","volume":"48 2","pages":"e25"},"PeriodicalIF":0.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277505/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current and emerging treatment strategies for <i>Mycobacterium avium</i> complex pulmonary disease: a narrative review.\",\"authors\":\"Chiwook Chung\",\"doi\":\"10.12771/emj.2025.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Mycobacterium avium</i> complex (MAC), comprising <i>M. avium</i> and <i>M. intracellulare</i>, constitutes the predominant cause of nontuberculous mycobacterial pulmonary disease (NTM-PD) in Korea, followed by the <i>M. abscessus</i> complex. Its global prevalence is increasing, as shown by a marked rise in Korea from 11.4 to 56.7 per 100,000 individuals between 2010 and 2021, surpassing the incidence of tuberculosis. Among the older adult population (aged ≥65 years), the prevalence escalated from 41.9 to 163.1 per 100,000, accounting for 47.6% of cases by 2021. Treatment should be individualized based on prognostic indicators, including cavitary disease, low body mass index, and positive sputum smears for acid-fast bacilli. Current therapeutic guidelines recommend a 3-drug regimen-consisting of a macrolide, rifampin, and ethambutol-administered for a minimum of 12 months following culture conversion. Nevertheless, treatment success rates are only roughly 60%, and over 30% of patients experience recurrence. This is often attributable to reinfection rather than relapse. Antimicrobial susceptibility testing for clarithromycin and amikacin is essential, as resistance significantly worsens prognosis. Ethambutol plays a crucial role in preventing the development of macrolide resistance, whereas the inclusion of rifampin remains a subject of ongoing debate. Emerging therapeutic strategies suggest daily dosing for milder cases, increased azithromycin dosing, and the substitution of rifampin with clofazimine in severe presentations. Surgical resection achieves a notable sputum conversion rate of approximately 93% in eligible candidates. For refractory MAC-PD, adjunctive therapy with amikacin is advised, coupled with strategies to reduce environmental exposure. Despite advancements in therapeutic approaches, patient outcomes remain suboptimal, highlighting the urgent need for novel interventions.</p>\",\"PeriodicalId\":41392,\"journal\":{\"name\":\"Ewha Medical Journal\",\"volume\":\"48 2\",\"pages\":\"e25\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ewha Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12771/emj.2025.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ewha Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12771/emj.2025.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Current and emerging treatment strategies for Mycobacterium avium complex pulmonary disease: a narrative review.
The Mycobacterium avium complex (MAC), comprising M. avium and M. intracellulare, constitutes the predominant cause of nontuberculous mycobacterial pulmonary disease (NTM-PD) in Korea, followed by the M. abscessus complex. Its global prevalence is increasing, as shown by a marked rise in Korea from 11.4 to 56.7 per 100,000 individuals between 2010 and 2021, surpassing the incidence of tuberculosis. Among the older adult population (aged ≥65 years), the prevalence escalated from 41.9 to 163.1 per 100,000, accounting for 47.6% of cases by 2021. Treatment should be individualized based on prognostic indicators, including cavitary disease, low body mass index, and positive sputum smears for acid-fast bacilli. Current therapeutic guidelines recommend a 3-drug regimen-consisting of a macrolide, rifampin, and ethambutol-administered for a minimum of 12 months following culture conversion. Nevertheless, treatment success rates are only roughly 60%, and over 30% of patients experience recurrence. This is often attributable to reinfection rather than relapse. Antimicrobial susceptibility testing for clarithromycin and amikacin is essential, as resistance significantly worsens prognosis. Ethambutol plays a crucial role in preventing the development of macrolide resistance, whereas the inclusion of rifampin remains a subject of ongoing debate. Emerging therapeutic strategies suggest daily dosing for milder cases, increased azithromycin dosing, and the substitution of rifampin with clofazimine in severe presentations. Surgical resection achieves a notable sputum conversion rate of approximately 93% in eligible candidates. For refractory MAC-PD, adjunctive therapy with amikacin is advised, coupled with strategies to reduce environmental exposure. Despite advancements in therapeutic approaches, patient outcomes remain suboptimal, highlighting the urgent need for novel interventions.