Xia Huang , Siyuan Wang , Yan Huang , Yue Wang , Guangchao Zang , Yan Liang , Juntong Liu , Xinyue Han , Jingjing Liao , Tingting Chen , Nan Lu , Guangyuan Zhang
{"title":"ARRDC3促进溶酶体介导的YAP降解以抑制肠道病毒复制。","authors":"Xia Huang , Siyuan Wang , Yan Huang , Yue Wang , Guangchao Zang , Yan Liang , Juntong Liu , Xinyue Han , Jingjing Liao , Tingting Chen , Nan Lu , Guangyuan Zhang","doi":"10.1016/j.virs.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Enterovirus D68 (EV-D68) and enterovirus A71 (EV-A71) are two major types of enteroviruses that pose emerging challenges to public health and have the potential to cause outbreaks, yet their pathogenic mechanisms remain largely unexplored. Arrestin domain containing 3 (ARRDC3) is a vital regulator of glucose metabolism, cancer development, and inflammation. Whether ARRDC3 contributes to innate antiviral immunity is undefined. Here, we found that enterovirus infection induces ARRDC3 expression at both the mRNA and protein levels, thereby inhibiting enterovirus replication. Moreover, we demonstrate that the expression of Yes-associated protein (YAP), a key effector of the Hippo pathway, is severely downregulated by ARRDC3 via lysosomal pathway. YAP facilitates enterovirus replication by suppressing the interferon pathway during the later stage of enterovirus infection, independent of its transcriptional activity. Finally, the ARRDC3-YAP pathway exhibits a broad-spectrum antiviral effect in various viral infections, including those caused by human parainfluenza virus type 3 (HPIV3) and vesicular stomatitis virus (VSV). Collectively, our results identify the critical role of ARRDC3 and its negative regulatory effect on YAP in the innate antiviral response, suggesting a novel therapeutic strategy against virus infection.</div></div>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":"40 4","pages":"Pages 658-668"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARRDC3 promotes lysosome-mediated YAP degradation to inhibit enterovirus replication\",\"authors\":\"Xia Huang , Siyuan Wang , Yan Huang , Yue Wang , Guangchao Zang , Yan Liang , Juntong Liu , Xinyue Han , Jingjing Liao , Tingting Chen , Nan Lu , Guangyuan Zhang\",\"doi\":\"10.1016/j.virs.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enterovirus D68 (EV-D68) and enterovirus A71 (EV-A71) are two major types of enteroviruses that pose emerging challenges to public health and have the potential to cause outbreaks, yet their pathogenic mechanisms remain largely unexplored. Arrestin domain containing 3 (ARRDC3) is a vital regulator of glucose metabolism, cancer development, and inflammation. Whether ARRDC3 contributes to innate antiviral immunity is undefined. Here, we found that enterovirus infection induces ARRDC3 expression at both the mRNA and protein levels, thereby inhibiting enterovirus replication. Moreover, we demonstrate that the expression of Yes-associated protein (YAP), a key effector of the Hippo pathway, is severely downregulated by ARRDC3 via lysosomal pathway. YAP facilitates enterovirus replication by suppressing the interferon pathway during the later stage of enterovirus infection, independent of its transcriptional activity. Finally, the ARRDC3-YAP pathway exhibits a broad-spectrum antiviral effect in various viral infections, including those caused by human parainfluenza virus type 3 (HPIV3) and vesicular stomatitis virus (VSV). Collectively, our results identify the critical role of ARRDC3 and its negative regulatory effect on YAP in the innate antiviral response, suggesting a novel therapeutic strategy against virus infection.</div></div>\",\"PeriodicalId\":23654,\"journal\":{\"name\":\"Virologica Sinica\",\"volume\":\"40 4\",\"pages\":\"Pages 658-668\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995820X2500104X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995820X2500104X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
ARRDC3 promotes lysosome-mediated YAP degradation to inhibit enterovirus replication
Enterovirus D68 (EV-D68) and enterovirus A71 (EV-A71) are two major types of enteroviruses that pose emerging challenges to public health and have the potential to cause outbreaks, yet their pathogenic mechanisms remain largely unexplored. Arrestin domain containing 3 (ARRDC3) is a vital regulator of glucose metabolism, cancer development, and inflammation. Whether ARRDC3 contributes to innate antiviral immunity is undefined. Here, we found that enterovirus infection induces ARRDC3 expression at both the mRNA and protein levels, thereby inhibiting enterovirus replication. Moreover, we demonstrate that the expression of Yes-associated protein (YAP), a key effector of the Hippo pathway, is severely downregulated by ARRDC3 via lysosomal pathway. YAP facilitates enterovirus replication by suppressing the interferon pathway during the later stage of enterovirus infection, independent of its transcriptional activity. Finally, the ARRDC3-YAP pathway exhibits a broad-spectrum antiviral effect in various viral infections, including those caused by human parainfluenza virus type 3 (HPIV3) and vesicular stomatitis virus (VSV). Collectively, our results identify the critical role of ARRDC3 and its negative regulatory effect on YAP in the innate antiviral response, suggesting a novel therapeutic strategy against virus infection.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769