{"title":"低热量植物汉堡的新潜力:通过替代藜麦、奇亚籽、大豆、苋菜和豌豆作为植物蛋白,优化功能性火鸡肉配方及其对质地和感官性状的影响。","authors":"Zeinab Erfanian, Marjan Nouri","doi":"10.1371/journal.pone.0325622","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the creation of a nutritionally and low-calorie turkey burger by integrating plant-based protein concentrates. Turkey burgers formulated with quinoa, chia, soybean, amaranth and pea proteins at inclusion levels of 0 and 30%. A Taguchi L8 orthogonal array employed to evaluate the effects on water (WHC) and oil (OHC) holding capacities, cooking loss, chemical properties, emulsion activity and stability. Optimal formulations including quinoa, soybean and amaranth at levels of 0, 12.5 and 25% developed using response surface methodology with a central composite design, emphasizing texture and overall acceptability and also microstructure analyzed through scanning electron microscopy (SEM). The glutamic acid identified as the most abundant amino acid across all protein types. The burgers made entirely of turkey meat displayed the lowest pH (6.13) and protein content (17.36%). In contrast, the meat free samples exhibited higher moisture, fat, ash and fiber content along with improved WHC and also OHC and reduced cooking loss. Plant protein formulations showed enhanced elasticity and lower levels of hardness, cohesiveness and chewiness compared to the meat-only samples. Sensory evaluations indicated an inclusion preference for protein concentrates with the optimal formulation consisting of 25% quinoa, 11.86% soybean, and 25% amaranth. SEM analysis confirmed the successful integration of vegetable proteins into the burger matrix. These findings highlighted the potential for mass-producing turkey burgers with reduced meat content, enhanced nutritional value, functional and sensory properties.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0325622"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286408/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel potential of low calorie plant burger: Functional turkey meat formulation optimized by replacing quinoa, chia, soy, amaranth and peas as vegetable protein and their influence on texture and sensory traits.\",\"authors\":\"Zeinab Erfanian, Marjan Nouri\",\"doi\":\"10.1371/journal.pone.0325622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the creation of a nutritionally and low-calorie turkey burger by integrating plant-based protein concentrates. Turkey burgers formulated with quinoa, chia, soybean, amaranth and pea proteins at inclusion levels of 0 and 30%. A Taguchi L8 orthogonal array employed to evaluate the effects on water (WHC) and oil (OHC) holding capacities, cooking loss, chemical properties, emulsion activity and stability. Optimal formulations including quinoa, soybean and amaranth at levels of 0, 12.5 and 25% developed using response surface methodology with a central composite design, emphasizing texture and overall acceptability and also microstructure analyzed through scanning electron microscopy (SEM). The glutamic acid identified as the most abundant amino acid across all protein types. The burgers made entirely of turkey meat displayed the lowest pH (6.13) and protein content (17.36%). In contrast, the meat free samples exhibited higher moisture, fat, ash and fiber content along with improved WHC and also OHC and reduced cooking loss. Plant protein formulations showed enhanced elasticity and lower levels of hardness, cohesiveness and chewiness compared to the meat-only samples. Sensory evaluations indicated an inclusion preference for protein concentrates with the optimal formulation consisting of 25% quinoa, 11.86% soybean, and 25% amaranth. SEM analysis confirmed the successful integration of vegetable proteins into the burger matrix. These findings highlighted the potential for mass-producing turkey burgers with reduced meat content, enhanced nutritional value, functional and sensory properties.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 7\",\"pages\":\"e0325622\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286408/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0325622\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0325622","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Novel potential of low calorie plant burger: Functional turkey meat formulation optimized by replacing quinoa, chia, soy, amaranth and peas as vegetable protein and their influence on texture and sensory traits.
This study explores the creation of a nutritionally and low-calorie turkey burger by integrating plant-based protein concentrates. Turkey burgers formulated with quinoa, chia, soybean, amaranth and pea proteins at inclusion levels of 0 and 30%. A Taguchi L8 orthogonal array employed to evaluate the effects on water (WHC) and oil (OHC) holding capacities, cooking loss, chemical properties, emulsion activity and stability. Optimal formulations including quinoa, soybean and amaranth at levels of 0, 12.5 and 25% developed using response surface methodology with a central composite design, emphasizing texture and overall acceptability and also microstructure analyzed through scanning electron microscopy (SEM). The glutamic acid identified as the most abundant amino acid across all protein types. The burgers made entirely of turkey meat displayed the lowest pH (6.13) and protein content (17.36%). In contrast, the meat free samples exhibited higher moisture, fat, ash and fiber content along with improved WHC and also OHC and reduced cooking loss. Plant protein formulations showed enhanced elasticity and lower levels of hardness, cohesiveness and chewiness compared to the meat-only samples. Sensory evaluations indicated an inclusion preference for protein concentrates with the optimal formulation consisting of 25% quinoa, 11.86% soybean, and 25% amaranth. SEM analysis confirmed the successful integration of vegetable proteins into the burger matrix. These findings highlighted the potential for mass-producing turkey burgers with reduced meat content, enhanced nutritional value, functional and sensory properties.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage