工作记忆中非周期和振荡活动对空间位置的差异表征。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Andrew Bender, Chong Zhao, Edward Vogel, Edward Awh, Bradley Voytek
{"title":"工作记忆中非周期和振荡活动对空间位置的差异表征。","authors":"Andrew Bender, Chong Zhao, Edward Vogel, Edward Awh, Bradley Voytek","doi":"10.1073/pnas.2506418122","DOIUrl":null,"url":null,"abstract":"<p><p>Decades of research have shown working memory (WM) relies on sustained prefrontal cortical activity and visual extrastriate activity, particularly in the alpha (8 to 12 Hz) frequency range. This alpha activity tracks the spatial location of WM items, even when spatial position is task-irrelevant and no stimulus is currently being presented. Traditional analyses of putative oscillations using bandpass filters, however, conflate oscillations with nonoscillatory aperiodic activity. Here, we reanalyzed seven human electroencephalography visual WM datasets to test the hypothesis that aperiodic activity, which is thought to reflect the relative contributions of excitatory and inhibitory drive-plays a distinct role in visual WM from true alpha oscillations. To do this, we developed a time-resolved spectral parameterization approach to disentangle oscillations from aperiodic activity during WM encoding and maintenance. Across all seven tasks, totaling 112 participants, we captured the representation of spatial location from total alpha power using inverted encoding models (IEMs), replicating traditional analyses. We then trained separate IEMs to estimate the strength of spatial location representation from aperiodic-adjusted alpha (reflecting just the oscillatory component) and aperiodic activity and find that IEM performance improves for aperiodic-adjusted alpha compared to total alpha power that blends the two signals. We also identify a distinct role for aperiodic activity, where IEM performance trained on aperiodic activity is highest during stimulus presentation, but not during the WM maintenance period. Our results emphasize the importance of controlling for aperiodic activity when studying neural oscillations while uncovering a functional role for aperiodic activity in encoding visual WM information.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 30","pages":"e2506418122"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential representations of spatial location by aperiodic and alpha oscillatory activity in working memory.\",\"authors\":\"Andrew Bender, Chong Zhao, Edward Vogel, Edward Awh, Bradley Voytek\",\"doi\":\"10.1073/pnas.2506418122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decades of research have shown working memory (WM) relies on sustained prefrontal cortical activity and visual extrastriate activity, particularly in the alpha (8 to 12 Hz) frequency range. This alpha activity tracks the spatial location of WM items, even when spatial position is task-irrelevant and no stimulus is currently being presented. Traditional analyses of putative oscillations using bandpass filters, however, conflate oscillations with nonoscillatory aperiodic activity. Here, we reanalyzed seven human electroencephalography visual WM datasets to test the hypothesis that aperiodic activity, which is thought to reflect the relative contributions of excitatory and inhibitory drive-plays a distinct role in visual WM from true alpha oscillations. To do this, we developed a time-resolved spectral parameterization approach to disentangle oscillations from aperiodic activity during WM encoding and maintenance. Across all seven tasks, totaling 112 participants, we captured the representation of spatial location from total alpha power using inverted encoding models (IEMs), replicating traditional analyses. We then trained separate IEMs to estimate the strength of spatial location representation from aperiodic-adjusted alpha (reflecting just the oscillatory component) and aperiodic activity and find that IEM performance improves for aperiodic-adjusted alpha compared to total alpha power that blends the two signals. We also identify a distinct role for aperiodic activity, where IEM performance trained on aperiodic activity is highest during stimulus presentation, but not during the WM maintenance period. Our results emphasize the importance of controlling for aperiodic activity when studying neural oscillations while uncovering a functional role for aperiodic activity in encoding visual WM information.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 30\",\"pages\":\"e2506418122\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2506418122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2506418122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

几十年的研究表明,工作记忆(WM)依赖于持续的前额皮质活动和视觉外皮层活动,特别是在α(8至12赫兹)频率范围内。这种α活动跟踪WM项目的空间位置,即使空间位置与任务无关,并且当前没有出现刺激。然而,使用带通滤波器对假定振荡的传统分析将振荡与非振荡非周期活动混为一谈。在这里,我们重新分析了7个人类脑电图视觉WM数据集,以验证非周期活动的假设,非周期活动被认为反映了兴奋性和抑制性驱动的相对贡献,在视觉WM中扮演着与真实α振荡不同的角色。为此,我们开发了一种时间分辨谱参数化方法,从WM编码和维护过程中的非周期活动中分离出振荡。在所有七个任务中,总共有112名参与者,我们使用反向编码模型(IEMs)复制传统分析,从总阿尔法功率中捕获空间位置的表示。然后,我们训练单独的IEM来估计非周期调整α(仅反映振荡分量)和非周期活动的空间位置表示强度,并发现与混合两种信号的总α功率相比,非周期调整α的IEM性能有所提高。我们还确定了非周期活动的独特作用,其中非周期活动训练的IEM表现在刺激呈现期间最高,而不是在WM维持期间。我们的研究结果强调了在研究神经振荡时控制非周期活动的重要性,同时揭示了非周期活动在编码视觉WM信息中的功能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential representations of spatial location by aperiodic and alpha oscillatory activity in working memory.

Decades of research have shown working memory (WM) relies on sustained prefrontal cortical activity and visual extrastriate activity, particularly in the alpha (8 to 12 Hz) frequency range. This alpha activity tracks the spatial location of WM items, even when spatial position is task-irrelevant and no stimulus is currently being presented. Traditional analyses of putative oscillations using bandpass filters, however, conflate oscillations with nonoscillatory aperiodic activity. Here, we reanalyzed seven human electroencephalography visual WM datasets to test the hypothesis that aperiodic activity, which is thought to reflect the relative contributions of excitatory and inhibitory drive-plays a distinct role in visual WM from true alpha oscillations. To do this, we developed a time-resolved spectral parameterization approach to disentangle oscillations from aperiodic activity during WM encoding and maintenance. Across all seven tasks, totaling 112 participants, we captured the representation of spatial location from total alpha power using inverted encoding models (IEMs), replicating traditional analyses. We then trained separate IEMs to estimate the strength of spatial location representation from aperiodic-adjusted alpha (reflecting just the oscillatory component) and aperiodic activity and find that IEM performance improves for aperiodic-adjusted alpha compared to total alpha power that blends the two signals. We also identify a distinct role for aperiodic activity, where IEM performance trained on aperiodic activity is highest during stimulus presentation, but not during the WM maintenance period. Our results emphasize the importance of controlling for aperiodic activity when studying neural oscillations while uncovering a functional role for aperiodic activity in encoding visual WM information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信