Lewis J Burke, Mark T Greenaway, Joseph J Betouras
{"title":"用墨西哥帽能量色散使系统中的暗激子和三角子变亮:InSe的例子。","authors":"Lewis J Burke, Mark T Greenaway, Joseph J Betouras","doi":"10.1038/s41699-025-00570-4","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the properties of momentum-dark excitons and trions formed in two-dimensional (2D) materials that exhibit an inverted Mexican hat-shaped-dispersion relation, taking as an example monolayer InSe. We employ variational techniques to obtain the momentum-dark ground state and bright state (non-zero and zero quasiparticle momenta, respectively). These states are particularly relevant due to their peaks in the quasiparticle density of states, where for the momentum-dark ground state, the contribution here is largest due to the presence of a van Hove singularity (VHS). The momentum-dark systems require a brightening procedure to provide the necessary momentum to become bright. We study the brightening through coupling to phonons and compute the photoluminescence spectrum. This work opens new avenues of research, such as exploiting dark excitons in solar cells and other semiconductor-based optoelectronic devices.</p>","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":"9 1","pages":"63"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brightening dark excitons and trions in systems with a Mexican-hat energy dispersion: example of InSe.\",\"authors\":\"Lewis J Burke, Mark T Greenaway, Joseph J Betouras\",\"doi\":\"10.1038/s41699-025-00570-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the properties of momentum-dark excitons and trions formed in two-dimensional (2D) materials that exhibit an inverted Mexican hat-shaped-dispersion relation, taking as an example monolayer InSe. We employ variational techniques to obtain the momentum-dark ground state and bright state (non-zero and zero quasiparticle momenta, respectively). These states are particularly relevant due to their peaks in the quasiparticle density of states, where for the momentum-dark ground state, the contribution here is largest due to the presence of a van Hove singularity (VHS). The momentum-dark systems require a brightening procedure to provide the necessary momentum to become bright. We study the brightening through coupling to phonons and compute the photoluminescence spectrum. This work opens new avenues of research, such as exploiting dark excitons in solar cells and other semiconductor-based optoelectronic devices.</p>\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\"9 1\",\"pages\":\"63\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41699-025-00570-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41699-025-00570-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Brightening dark excitons and trions in systems with a Mexican-hat energy dispersion: example of InSe.
We investigate the properties of momentum-dark excitons and trions formed in two-dimensional (2D) materials that exhibit an inverted Mexican hat-shaped-dispersion relation, taking as an example monolayer InSe. We employ variational techniques to obtain the momentum-dark ground state and bright state (non-zero and zero quasiparticle momenta, respectively). These states are particularly relevant due to their peaks in the quasiparticle density of states, where for the momentum-dark ground state, the contribution here is largest due to the presence of a van Hove singularity (VHS). The momentum-dark systems require a brightening procedure to provide the necessary momentum to become bright. We study the brightening through coupling to phonons and compute the photoluminescence spectrum. This work opens new avenues of research, such as exploiting dark excitons in solar cells and other semiconductor-based optoelectronic devices.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.