Fe3GaTe2异质结构室温铁磁性的非挥发性电场控制。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chuanyang Cai, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Xiaoqiang Feng, Liang Liu, Chao Jiang, Jun He
{"title":"Fe3GaTe2异质结构室温铁磁性的非挥发性电场控制。","authors":"Chuanyang Cai, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Xiaoqiang Feng, Liang Liu, Chao Jiang, Jun He","doi":"10.1038/s41467-025-62159-1","DOIUrl":null,"url":null,"abstract":"<p><p>Van der Waals multiferroic structures hold promises for advancing the development of low-power multifunctional nanoelectronics devices, but single-phase two-dimensional multiferroic materials are limited. In this study, we constructed a room-temperature P(VDF-TrFE)/Fe<sub>3</sub>GaTe<sub>2</sub> heterostructure (ferromagnetic layer thickness of 4.8 nm). and demonstrate significant bidirectional modulation of the Curie temperature upon application of ±90 V. Specifically, the Curie temperature decreased from 326 K to 247 K under +90 V and increased to 366 K under -90 V. Notably, we observed layer-dependent magnetic modulation, In 3-layer Fe<sub>3</sub>GaTe<sub>2</sub>, transitioning from negative to positive polarization increases Curie temperature, while thicker configurations show a decrease. This phenomenon originates from the competition between interlayer/intralayer magnetic exchange coupling driven by the electric field (density functional theory calculations), supporting non-volatile switching of the magnetization state, which is suitable for high-precision neural network computing. This discovery provides an innovative approach for developing low-power multifunctional nanoelectronics devices using two-dimensional magnetoelectric coupling structures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6797"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287275/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-volatile electric-field control of room-temperature ferromagnetism in Fe<sub>3</sub>GaTe<sub>2</sub> heterostructures.\",\"authors\":\"Chuanyang Cai, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Xiaoqiang Feng, Liang Liu, Chao Jiang, Jun He\",\"doi\":\"10.1038/s41467-025-62159-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Van der Waals multiferroic structures hold promises for advancing the development of low-power multifunctional nanoelectronics devices, but single-phase two-dimensional multiferroic materials are limited. In this study, we constructed a room-temperature P(VDF-TrFE)/Fe<sub>3</sub>GaTe<sub>2</sub> heterostructure (ferromagnetic layer thickness of 4.8 nm). and demonstrate significant bidirectional modulation of the Curie temperature upon application of ±90 V. Specifically, the Curie temperature decreased from 326 K to 247 K under +90 V and increased to 366 K under -90 V. Notably, we observed layer-dependent magnetic modulation, In 3-layer Fe<sub>3</sub>GaTe<sub>2</sub>, transitioning from negative to positive polarization increases Curie temperature, while thicker configurations show a decrease. This phenomenon originates from the competition between interlayer/intralayer magnetic exchange coupling driven by the electric field (density functional theory calculations), supporting non-volatile switching of the magnetization state, which is suitable for high-precision neural network computing. This discovery provides an innovative approach for developing low-power multifunctional nanoelectronics devices using two-dimensional magnetoelectric coupling structures.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6797\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62159-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62159-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

范德华多铁结构有望推动低功耗多功能纳米电子器件的发展,但单相二维多铁材料是有限的。本研究构建了室温P(VDF-TrFE)/Fe3GaTe2异质结构(铁磁层厚度为4.8 nm)。在±90 V的电压下,居里温度会发生显著的双向调制。在+90 V下,居里温度从326 K下降到247 K,在-90 V下,居里温度上升到366 K。值得注意的是,我们观察到与层相关的磁调制,在3层Fe3GaTe2中,从负极化到正极化的转变增加了居里温度,而更厚的结构则降低了居里温度。这种现象源于电场驱动层间/层内磁交换耦合之间的竞争(密度泛函理论计算),支持磁化状态的非易失性切换,适合于高精度神经网络计算。这一发现为利用二维磁电耦合结构开发低功耗多功能纳米电子器件提供了一种创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-volatile electric-field control of room-temperature ferromagnetism in Fe3GaTe2 heterostructures.

Van der Waals multiferroic structures hold promises for advancing the development of low-power multifunctional nanoelectronics devices, but single-phase two-dimensional multiferroic materials are limited. In this study, we constructed a room-temperature P(VDF-TrFE)/Fe3GaTe2 heterostructure (ferromagnetic layer thickness of 4.8 nm). and demonstrate significant bidirectional modulation of the Curie temperature upon application of ±90 V. Specifically, the Curie temperature decreased from 326 K to 247 K under +90 V and increased to 366 K under -90 V. Notably, we observed layer-dependent magnetic modulation, In 3-layer Fe3GaTe2, transitioning from negative to positive polarization increases Curie temperature, while thicker configurations show a decrease. This phenomenon originates from the competition between interlayer/intralayer magnetic exchange coupling driven by the electric field (density functional theory calculations), supporting non-volatile switching of the magnetization state, which is suitable for high-precision neural network computing. This discovery provides an innovative approach for developing low-power multifunctional nanoelectronics devices using two-dimensional magnetoelectric coupling structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信