Amal A Elsharif, Laurence H Patterson, Steven D Shnyder, Helen M Sheldrake
{"title":"K562慢性髓系白血病细胞作为双表达β3的功能细胞系模型研究αIIbβ3和αvβ3联合拮抗的作用","authors":"Amal A Elsharif, Laurence H Patterson, Steven D Shnyder, Helen M Sheldrake","doi":"10.3390/mps8040073","DOIUrl":null,"url":null,"abstract":"<p><p>Several of the integrin family of cell adhesion receptors have been popular targets for the development of anticancer agents, but with little clinical success to date. Cancer cells usually express multiple redundant integrins; one hypothesis for the lack of efficacy of current antagonists is their high selectivity for a single integrin. To address this, we developed a functional dual-β3-expressing cell model to investigate the effects of combined αIIbβ3/αvβ3 antagonism. We established that treating K562 chronic myeloid leukemia cells with 0.04 μM phorbol 12-myristate 13-acetate (PMA) for 40 h significantly upregulates functional αIIbβ3 and αvβ3 integrins. This optimized method provides a reliable platform for adhesion and detachment assays, enabling the characterization of dual integrin targeting strategies. Using this model, we demonstrate that combining αIIbβ3 and αvβ3 antagonists (GR144053 and cRGDfV) synergistically enhances inhibition of cell adhesion and promotes cell detachment compared to single-agent treatments. Our findings establish a reproducible approach for studying dual β3 integrin targeting, which can be used to investigate potential strategies for overcoming integrin redundancy in cancer therapeutics.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285993/pdf/","citationCount":"0","resultStr":"{\"title\":\"K562 Chronic Myeloid Leukemia Cells as a Dual β3-Expressing Functional Cell Line Model to Investigate the Effects of Combined αIIbβ3 and αvβ3 Antagonism.\",\"authors\":\"Amal A Elsharif, Laurence H Patterson, Steven D Shnyder, Helen M Sheldrake\",\"doi\":\"10.3390/mps8040073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several of the integrin family of cell adhesion receptors have been popular targets for the development of anticancer agents, but with little clinical success to date. Cancer cells usually express multiple redundant integrins; one hypothesis for the lack of efficacy of current antagonists is their high selectivity for a single integrin. To address this, we developed a functional dual-β3-expressing cell model to investigate the effects of combined αIIbβ3/αvβ3 antagonism. We established that treating K562 chronic myeloid leukemia cells with 0.04 μM phorbol 12-myristate 13-acetate (PMA) for 40 h significantly upregulates functional αIIbβ3 and αvβ3 integrins. This optimized method provides a reliable platform for adhesion and detachment assays, enabling the characterization of dual integrin targeting strategies. Using this model, we demonstrate that combining αIIbβ3 and αvβ3 antagonists (GR144053 and cRGDfV) synergistically enhances inhibition of cell adhesion and promotes cell detachment compared to single-agent treatments. Our findings establish a reproducible approach for studying dual β3 integrin targeting, which can be used to investigate potential strategies for overcoming integrin redundancy in cancer therapeutics.</p>\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285993/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps8040073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8040073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
K562 Chronic Myeloid Leukemia Cells as a Dual β3-Expressing Functional Cell Line Model to Investigate the Effects of Combined αIIbβ3 and αvβ3 Antagonism.
Several of the integrin family of cell adhesion receptors have been popular targets for the development of anticancer agents, but with little clinical success to date. Cancer cells usually express multiple redundant integrins; one hypothesis for the lack of efficacy of current antagonists is their high selectivity for a single integrin. To address this, we developed a functional dual-β3-expressing cell model to investigate the effects of combined αIIbβ3/αvβ3 antagonism. We established that treating K562 chronic myeloid leukemia cells with 0.04 μM phorbol 12-myristate 13-acetate (PMA) for 40 h significantly upregulates functional αIIbβ3 and αvβ3 integrins. This optimized method provides a reliable platform for adhesion and detachment assays, enabling the characterization of dual integrin targeting strategies. Using this model, we demonstrate that combining αIIbβ3 and αvβ3 antagonists (GR144053 and cRGDfV) synergistically enhances inhibition of cell adhesion and promotes cell detachment compared to single-agent treatments. Our findings establish a reproducible approach for studying dual β3 integrin targeting, which can be used to investigate potential strategies for overcoming integrin redundancy in cancer therapeutics.