Margaret Oluwatoyin Japhet, Adeogo Timilehin Bankole, Temiloluwa Ifeoluwa Omotade, Oyelola Eyinade Adeoye, Oladiran Famurewa, Simeon K Adesina
{"title":"一种基于纳米颗粒的轮状病毒免疫检测方法的开发和评估:在低收入环境中替代ELISA和PCR的合适方法。","authors":"Margaret Oluwatoyin Japhet, Adeogo Timilehin Bankole, Temiloluwa Ifeoluwa Omotade, Oyelola Eyinade Adeoye, Oladiran Famurewa, Simeon K Adesina","doi":"10.3390/mps8040081","DOIUrl":null,"url":null,"abstract":"<p><p>Every year, diarrhoea is responsible for >1 million deaths in children with ages from 0 to 5 years, with rotavirus as the leading cause. The regions most affected lack routine rotavirus diagnosis due to high cost, lack of necessary equipment and shortage of trained-personnel for Enzyme-Link-Immunosorbent-Assay (ELISA) and molecular methods. We report the development and evaluation of a cheap, nanoparticle-based immunoassay for routine machine-free rotavirus diagnosis. In this work, optimal conditions for oxidation of cotton swabs and aldehyde production for kit development was confirmed by Fourier-Transform Infrared Spectroscopy (FTIR). Lactoferrin (LF) needed to bind the virus to the cotton swab was immobilised on activated cotton swabs, followed by the capture of commercial rotavirus antigen on LF-immobilised swabs. This was dipped in coloured nanobeads covalently coupled to rotavirus-group-specific monoclonal antibody for visual rotavirus detection. Subsequently, rotavirus detection by nanoassay, commercial ELISA and quantitative reverse transcription PCR were compared using same set of 186 stool samples and subjected to statistical analyses. Optimal oxidisation condition was observed using 48 mg/mL NaIO<sub>4</sub> in 0.1 M sodium acetate buffer at 35 °C for 9 h. Rotavirus detection was confirmed visually by blue colour retention on swabs after several washings. Sensitivity, specificity, positive-predictive-value and negative-predictive-value of ELISA in rotavirus detection were 60%, 84%, 53% and 88%, respectively, while our immunoassay showed performance at 88%, 94%, 82% and 96%. This immunoassay will provide effective rotavirus public health interventions in low-and-middle-income countries with high morbidity/mortality.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Evaluation of a Nanoparticle-Based Immunoassay for Rotavirus Detection: A Suitable Alternative to ELISA and PCR in Low-Income Setting.\",\"authors\":\"Margaret Oluwatoyin Japhet, Adeogo Timilehin Bankole, Temiloluwa Ifeoluwa Omotade, Oyelola Eyinade Adeoye, Oladiran Famurewa, Simeon K Adesina\",\"doi\":\"10.3390/mps8040081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Every year, diarrhoea is responsible for >1 million deaths in children with ages from 0 to 5 years, with rotavirus as the leading cause. The regions most affected lack routine rotavirus diagnosis due to high cost, lack of necessary equipment and shortage of trained-personnel for Enzyme-Link-Immunosorbent-Assay (ELISA) and molecular methods. We report the development and evaluation of a cheap, nanoparticle-based immunoassay for routine machine-free rotavirus diagnosis. In this work, optimal conditions for oxidation of cotton swabs and aldehyde production for kit development was confirmed by Fourier-Transform Infrared Spectroscopy (FTIR). Lactoferrin (LF) needed to bind the virus to the cotton swab was immobilised on activated cotton swabs, followed by the capture of commercial rotavirus antigen on LF-immobilised swabs. This was dipped in coloured nanobeads covalently coupled to rotavirus-group-specific monoclonal antibody for visual rotavirus detection. Subsequently, rotavirus detection by nanoassay, commercial ELISA and quantitative reverse transcription PCR were compared using same set of 186 stool samples and subjected to statistical analyses. Optimal oxidisation condition was observed using 48 mg/mL NaIO<sub>4</sub> in 0.1 M sodium acetate buffer at 35 °C for 9 h. Rotavirus detection was confirmed visually by blue colour retention on swabs after several washings. Sensitivity, specificity, positive-predictive-value and negative-predictive-value of ELISA in rotavirus detection were 60%, 84%, 53% and 88%, respectively, while our immunoassay showed performance at 88%, 94%, 82% and 96%. This immunoassay will provide effective rotavirus public health interventions in low-and-middle-income countries with high morbidity/mortality.</p>\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps8040081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8040081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development and Evaluation of a Nanoparticle-Based Immunoassay for Rotavirus Detection: A Suitable Alternative to ELISA and PCR in Low-Income Setting.
Every year, diarrhoea is responsible for >1 million deaths in children with ages from 0 to 5 years, with rotavirus as the leading cause. The regions most affected lack routine rotavirus diagnosis due to high cost, lack of necessary equipment and shortage of trained-personnel for Enzyme-Link-Immunosorbent-Assay (ELISA) and molecular methods. We report the development and evaluation of a cheap, nanoparticle-based immunoassay for routine machine-free rotavirus diagnosis. In this work, optimal conditions for oxidation of cotton swabs and aldehyde production for kit development was confirmed by Fourier-Transform Infrared Spectroscopy (FTIR). Lactoferrin (LF) needed to bind the virus to the cotton swab was immobilised on activated cotton swabs, followed by the capture of commercial rotavirus antigen on LF-immobilised swabs. This was dipped in coloured nanobeads covalently coupled to rotavirus-group-specific monoclonal antibody for visual rotavirus detection. Subsequently, rotavirus detection by nanoassay, commercial ELISA and quantitative reverse transcription PCR were compared using same set of 186 stool samples and subjected to statistical analyses. Optimal oxidisation condition was observed using 48 mg/mL NaIO4 in 0.1 M sodium acetate buffer at 35 °C for 9 h. Rotavirus detection was confirmed visually by blue colour retention on swabs after several washings. Sensitivity, specificity, positive-predictive-value and negative-predictive-value of ELISA in rotavirus detection were 60%, 84%, 53% and 88%, respectively, while our immunoassay showed performance at 88%, 94%, 82% and 96%. This immunoassay will provide effective rotavirus public health interventions in low-and-middle-income countries with high morbidity/mortality.