转录因子BnaWRKY75通过促进油菜水杨酸的生物合成来增强油菜对坏死性菌核病的抗性。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Dongxiao Liu, Jialin Fan, Yi Ye, Yu Liu, Sichao Ren, Wenjing Lei, Xingrui Zhang, Ancheng He, Junqiang Xing, Qinfu Sun, Li Lin, Youping Wang, Jian Wu
{"title":"转录因子BnaWRKY75通过促进油菜水杨酸的生物合成来增强油菜对坏死性菌核病的抗性。","authors":"Dongxiao Liu, Jialin Fan, Yi Ye, Yu Liu, Sichao Ren, Wenjing Lei, Xingrui Zhang, Ancheng He, Junqiang Xing, Qinfu Sun, Li Lin, Youping Wang, Jian Wu","doi":"10.1093/jxb/eraf332","DOIUrl":null,"url":null,"abstract":"<p><p>Sclerotinia sclerotiorum, a devastating necrotrophic fungus causing stem rot in oilseed rape, results in significant global yield losses. Deciphering plant-S. sclerotiorum interactions is crucial for disease control. Here, we report that the transcription factor BnaWRKY75 positively regulates resistance to this pathogen. BnaWRKY75 was the most highly induced WRKY genes upon S. sclerotiorum infection. Overexpressing BnaA10.WRKY75 in both Arabidopsis and oilseed rape enhanced resistance to S. sclerotiorum, whereas BnaWRKY75 knockout plants exhibited reduced resistance. RNA sequencing and DNA affinity purification sequencing showed that the isochorismate synthase gene BnaICS1, a key gene required for salicylic acid (SA) biosynthesis, is a potential target of BnaA10.WRKY75. Yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays indicated that BnaA10.WRKY75 directly binds to the BnaCnn.ICS1 promoter to activate its transcription, thereby promoting SA biosynthesis and activating SA-dependent defenses. Genetic analysis in Arabidopsis confirmed ICS1 functions downstream of BnaA10.WRKY75. SA treatment significantly enhanced resistance to S. sclerotiorum in oilseed rape, further highlighting the importance of SA in defense against this pathogen. Finally, we observed differences in transcriptional regulation among BnaICS1 homologous genes in allotetraploid oilseed rape. Our findings suggest that the BnaWRKY75-BnaICS1 module regulates SA-dependent resistance to S. sclerotiorum, expanding our understanding of plant immune responses to necrotrophic pathogens.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcription factor BnaWRKY75 enhances resistance to the necrotrophic pathogen Sclerotinia sclerotiorum by promoting salicylic acid biosynthesis in oilseed rape.\",\"authors\":\"Dongxiao Liu, Jialin Fan, Yi Ye, Yu Liu, Sichao Ren, Wenjing Lei, Xingrui Zhang, Ancheng He, Junqiang Xing, Qinfu Sun, Li Lin, Youping Wang, Jian Wu\",\"doi\":\"10.1093/jxb/eraf332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sclerotinia sclerotiorum, a devastating necrotrophic fungus causing stem rot in oilseed rape, results in significant global yield losses. Deciphering plant-S. sclerotiorum interactions is crucial for disease control. Here, we report that the transcription factor BnaWRKY75 positively regulates resistance to this pathogen. BnaWRKY75 was the most highly induced WRKY genes upon S. sclerotiorum infection. Overexpressing BnaA10.WRKY75 in both Arabidopsis and oilseed rape enhanced resistance to S. sclerotiorum, whereas BnaWRKY75 knockout plants exhibited reduced resistance. RNA sequencing and DNA affinity purification sequencing showed that the isochorismate synthase gene BnaICS1, a key gene required for salicylic acid (SA) biosynthesis, is a potential target of BnaA10.WRKY75. Yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays indicated that BnaA10.WRKY75 directly binds to the BnaCnn.ICS1 promoter to activate its transcription, thereby promoting SA biosynthesis and activating SA-dependent defenses. Genetic analysis in Arabidopsis confirmed ICS1 functions downstream of BnaA10.WRKY75. SA treatment significantly enhanced resistance to S. sclerotiorum in oilseed rape, further highlighting the importance of SA in defense against this pathogen. Finally, we observed differences in transcriptional regulation among BnaICS1 homologous genes in allotetraploid oilseed rape. Our findings suggest that the BnaWRKY75-BnaICS1 module regulates SA-dependent resistance to S. sclerotiorum, expanding our understanding of plant immune responses to necrotrophic pathogens.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf332\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf332","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

菌核菌(Sclerotinia sclerotiorum)是一种引起油菜茎腐病的毁灭性坏死性真菌,对全球产量造成重大损失。破译植株。菌核相互作用对疾病控制至关重要。在这里,我们报道了转录因子BnaWRKY75正调控对这种病原体的抗性。BnaWRKY75是对菌核葡萄球菌感染诱导程度最高的WRKY基因。Overexpressing BnaA10。WRKY75基因在拟南芥和油菜中均增强了对菌核病菌的抗性,而敲除BnaWRKY75基因的植株则表现出抗性降低。RNA测序和DNA亲和纯化测序结果显示,水杨酸(SA)生物合成所需的关键基因BnaICS1是BnaA10.WRKY75的潜在靶点。酵母单杂交、双荧光素酶和电泳迁移转移实验表明BnaA10。WRKY75直接与BnaCnn结合。ICS1启动子激活其转录,从而促进SA生物合成并激活SA依赖性防御。拟南芥的遗传分析证实了ICS1在BnaA10.WRKY75下游的功能。SA处理显著增强了油菜对菌核病菌的抗性,进一步凸显了SA在油菜抗菌核病菌中的重要作用。最后,我们观察了异源四倍体油菜中BnaICS1同源基因的转录调控差异。我们的研究结果表明,BnaWRKY75-BnaICS1模块调节sa依赖的对菌核病菌的抗性,扩大了我们对植物对坏死性病原体的免疫反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The transcription factor BnaWRKY75 enhances resistance to the necrotrophic pathogen Sclerotinia sclerotiorum by promoting salicylic acid biosynthesis in oilseed rape.

Sclerotinia sclerotiorum, a devastating necrotrophic fungus causing stem rot in oilseed rape, results in significant global yield losses. Deciphering plant-S. sclerotiorum interactions is crucial for disease control. Here, we report that the transcription factor BnaWRKY75 positively regulates resistance to this pathogen. BnaWRKY75 was the most highly induced WRKY genes upon S. sclerotiorum infection. Overexpressing BnaA10.WRKY75 in both Arabidopsis and oilseed rape enhanced resistance to S. sclerotiorum, whereas BnaWRKY75 knockout plants exhibited reduced resistance. RNA sequencing and DNA affinity purification sequencing showed that the isochorismate synthase gene BnaICS1, a key gene required for salicylic acid (SA) biosynthesis, is a potential target of BnaA10.WRKY75. Yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays indicated that BnaA10.WRKY75 directly binds to the BnaCnn.ICS1 promoter to activate its transcription, thereby promoting SA biosynthesis and activating SA-dependent defenses. Genetic analysis in Arabidopsis confirmed ICS1 functions downstream of BnaA10.WRKY75. SA treatment significantly enhanced resistance to S. sclerotiorum in oilseed rape, further highlighting the importance of SA in defense against this pathogen. Finally, we observed differences in transcriptional regulation among BnaICS1 homologous genes in allotetraploid oilseed rape. Our findings suggest that the BnaWRKY75-BnaICS1 module regulates SA-dependent resistance to S. sclerotiorum, expanding our understanding of plant immune responses to necrotrophic pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信