Manashree S Malpe, Leon F McSwain, Heath M Aston, Karl A Kudyba, Chun Ng, Megan P Wright, Cordula Schulz
{"title":"雄性果蝇在交配条件下差异表达调节干细胞分裂频率的小蛋白。","authors":"Manashree S Malpe, Leon F McSwain, Heath M Aston, Karl A Kudyba, Chun Ng, Megan P Wright, Cordula Schulz","doi":"10.3390/jdb13030021","DOIUrl":null,"url":null,"abstract":"<p><p>The germline stem cells (GSCs) in the male gonad of <i>Drosophila</i> can increase their division frequency in response to a demand for more sperm caused by repeated mating. However, the molecules and mechanisms regulating and mediating this response have yet to be fully explored. Here, we present the results of a transcriptome analysis comparing expression from the testis tips from non-mated and mated males. An overlapping set of 18 differentially expressed genes (DEGs) from two independent <i>wild-type</i> (<i>wt</i>) strains revealed that the majority of the DEGs encode secreted proteins, which suggests roles for them in cell-cell interactions. Consistent with a role for secretion in regulating GSC divisions, knocking down Signal Recognition Particle (SRP) components within the germline cells using RNA Interference (RNAi), prevented the increase in GSC division frequency in response to mating. The major class of DEGs encodes polypeptides below the size of 250 amino acids, also known as small proteins. Upon reducing germline expression of small proteins, males no longer increased GSC division frequency after repeated mating. We hypothesize that mating induces cellular interactions via small proteins to ensure continued GSC divisions for the production of sperm.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"13 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286032/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Drosophila</i> Males Differentially Express Small Proteins Regulating Stem Cell Division Frequency in Response to Mating.\",\"authors\":\"Manashree S Malpe, Leon F McSwain, Heath M Aston, Karl A Kudyba, Chun Ng, Megan P Wright, Cordula Schulz\",\"doi\":\"10.3390/jdb13030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The germline stem cells (GSCs) in the male gonad of <i>Drosophila</i> can increase their division frequency in response to a demand for more sperm caused by repeated mating. However, the molecules and mechanisms regulating and mediating this response have yet to be fully explored. Here, we present the results of a transcriptome analysis comparing expression from the testis tips from non-mated and mated males. An overlapping set of 18 differentially expressed genes (DEGs) from two independent <i>wild-type</i> (<i>wt</i>) strains revealed that the majority of the DEGs encode secreted proteins, which suggests roles for them in cell-cell interactions. Consistent with a role for secretion in regulating GSC divisions, knocking down Signal Recognition Particle (SRP) components within the germline cells using RNA Interference (RNAi), prevented the increase in GSC division frequency in response to mating. The major class of DEGs encodes polypeptides below the size of 250 amino acids, also known as small proteins. Upon reducing germline expression of small proteins, males no longer increased GSC division frequency after repeated mating. We hypothesize that mating induces cellular interactions via small proteins to ensure continued GSC divisions for the production of sperm.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286032/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb13030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb13030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Drosophila Males Differentially Express Small Proteins Regulating Stem Cell Division Frequency in Response to Mating.
The germline stem cells (GSCs) in the male gonad of Drosophila can increase their division frequency in response to a demand for more sperm caused by repeated mating. However, the molecules and mechanisms regulating and mediating this response have yet to be fully explored. Here, we present the results of a transcriptome analysis comparing expression from the testis tips from non-mated and mated males. An overlapping set of 18 differentially expressed genes (DEGs) from two independent wild-type (wt) strains revealed that the majority of the DEGs encode secreted proteins, which suggests roles for them in cell-cell interactions. Consistent with a role for secretion in regulating GSC divisions, knocking down Signal Recognition Particle (SRP) components within the germline cells using RNA Interference (RNAi), prevented the increase in GSC division frequency in response to mating. The major class of DEGs encodes polypeptides below the size of 250 amino acids, also known as small proteins. Upon reducing germline expression of small proteins, males no longer increased GSC division frequency after repeated mating. We hypothesize that mating induces cellular interactions via small proteins to ensure continued GSC divisions for the production of sperm.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.