Wenshui Li, Xinchen Jiang, Shuo Lu, Wen Lu, Shanshan Ma, Yi Zhuo, Qingtao Gao, Yi Xiao, Binqian Wu, Junyang Xie, Yuhang Yu, Xiangxin Li, Que Deng, Ming Lu
{"title":"明胶海绵支架移植嗅觉粘膜间充质干细胞促进脊髓损伤功能恢复。","authors":"Wenshui Li, Xinchen Jiang, Shuo Lu, Wen Lu, Shanshan Ma, Yi Zhuo, Qingtao Gao, Yi Xiao, Binqian Wu, Junyang Xie, Yuhang Yu, Xiangxin Li, Que Deng, Ming Lu","doi":"10.3389/fbioe.2025.1628758","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a pathological condition that damages the central nervous system. Due to the persistence of neuroinflammation after injury, the prognosis is often poor. Recent studies have found that local transplantation of mesenchymal stem cells (MSCs) can improve SCI. However, MSCs retain and engraft at the injured site limit, which may be the reason their effectiveness is greatly reduced. A gelatin sponge (GS), commonly used in clinical practice, was selected as a scaffold to deliver olfactory mucosal mesenchymal stem cells (OM-MSCs). This was done to to enhance local reparative of MSCs at the injury site. We also paid special attention to the biocompatibility of GS co-cultured with OM-MSCs <i>in vitro</i>, and then applied acellular GS and GS loaded with OM-MSCs to the rat SCI model, respectively. After the scaffold was transplanted into rat complete spinal cord injury, behavioral scores and hindlimb movement scores were improved evidently. Local inflammation in the spinal cords of transplanted rats was reduced, and the changes were related to cell pyroptosis. In addition, we found that gelatin sponges and OM-MSC transplantation did not damage other organs in rats. In conclusion, the GS scaffold loaded with OM-MSCs can reduce the local inflammatory microenvironment and facilitate neurological recovery, providing a potential and practical strategy for therapeutic approach of spinal cord injury.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1628758"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Olfactory mucosal mesenchymal stem cells delivered by gelatin sponge scaffolds promote functional recovery of spinal cord injury.\",\"authors\":\"Wenshui Li, Xinchen Jiang, Shuo Lu, Wen Lu, Shanshan Ma, Yi Zhuo, Qingtao Gao, Yi Xiao, Binqian Wu, Junyang Xie, Yuhang Yu, Xiangxin Li, Que Deng, Ming Lu\",\"doi\":\"10.3389/fbioe.2025.1628758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a pathological condition that damages the central nervous system. Due to the persistence of neuroinflammation after injury, the prognosis is often poor. Recent studies have found that local transplantation of mesenchymal stem cells (MSCs) can improve SCI. However, MSCs retain and engraft at the injured site limit, which may be the reason their effectiveness is greatly reduced. A gelatin sponge (GS), commonly used in clinical practice, was selected as a scaffold to deliver olfactory mucosal mesenchymal stem cells (OM-MSCs). This was done to to enhance local reparative of MSCs at the injury site. We also paid special attention to the biocompatibility of GS co-cultured with OM-MSCs <i>in vitro</i>, and then applied acellular GS and GS loaded with OM-MSCs to the rat SCI model, respectively. After the scaffold was transplanted into rat complete spinal cord injury, behavioral scores and hindlimb movement scores were improved evidently. Local inflammation in the spinal cords of transplanted rats was reduced, and the changes were related to cell pyroptosis. In addition, we found that gelatin sponges and OM-MSC transplantation did not damage other organs in rats. In conclusion, the GS scaffold loaded with OM-MSCs can reduce the local inflammatory microenvironment and facilitate neurological recovery, providing a potential and practical strategy for therapeutic approach of spinal cord injury.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1628758\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1628758\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1628758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Olfactory mucosal mesenchymal stem cells delivered by gelatin sponge scaffolds promote functional recovery of spinal cord injury.
Spinal cord injury (SCI) is a pathological condition that damages the central nervous system. Due to the persistence of neuroinflammation after injury, the prognosis is often poor. Recent studies have found that local transplantation of mesenchymal stem cells (MSCs) can improve SCI. However, MSCs retain and engraft at the injured site limit, which may be the reason their effectiveness is greatly reduced. A gelatin sponge (GS), commonly used in clinical practice, was selected as a scaffold to deliver olfactory mucosal mesenchymal stem cells (OM-MSCs). This was done to to enhance local reparative of MSCs at the injury site. We also paid special attention to the biocompatibility of GS co-cultured with OM-MSCs in vitro, and then applied acellular GS and GS loaded with OM-MSCs to the rat SCI model, respectively. After the scaffold was transplanted into rat complete spinal cord injury, behavioral scores and hindlimb movement scores were improved evidently. Local inflammation in the spinal cords of transplanted rats was reduced, and the changes were related to cell pyroptosis. In addition, we found that gelatin sponges and OM-MSC transplantation did not damage other organs in rats. In conclusion, the GS scaffold loaded with OM-MSCs can reduce the local inflammatory microenvironment and facilitate neurological recovery, providing a potential and practical strategy for therapeutic approach of spinal cord injury.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.