Boxi Li, Xiaobing Chen, Tanner A Wilcoxson, Jiho Kang, Thomas M Truskett, Delia J Milliron, Carlos R Baiz, Sean T Roberts
{"title":"ITO纳米晶体的光热生成及其对周围环境的耗散。","authors":"Boxi Li, Xiaobing Chen, Tanner A Wilcoxson, Jiho Kang, Thomas M Truskett, Delia J Milliron, Carlos R Baiz, Sean T Roberts","doi":"10.1021/acs.nanolett.5c02441","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic metal oxide nanocrystals can readily transduce infrared light into heat for applications in catalysis, therapeutics, and soft robotics. Here, we investigate photothermal pathways in oleate-capped tin-doped indium oxide (ITO) nanocrystals dispersed in toluene, mapping heat transfer dynamics from the ITO lattice to its surface and surrounding solvent. Using rhodamine B dyes adhered to nanocrystal surfaces and toluene as temperature probes, we track photothermal heat dissipation via transient absorption spectroscopy. We find heat transfer from ITO nanocrystals to surface-adsorbed molecules unfolds over tens of picoseconds, followed by heat dissipation into the surrounding solvent over hundreds of picoseconds. We have developed a theoretical model that quantitatively reproduces these kinetics and identifies nanocrystal surface-to-solvent heat transfer as the primary bottleneck in heat dissipation. These insights advance our understanding of nanoscale heat transport involving ITO nanocrystals and offer insights into how to design these materials for heat-driven applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Photothermal Heat Generation in ITO Nanocrystals and Its Dissipation to Their Surrounding Environment.\",\"authors\":\"Boxi Li, Xiaobing Chen, Tanner A Wilcoxson, Jiho Kang, Thomas M Truskett, Delia J Milliron, Carlos R Baiz, Sean T Roberts\",\"doi\":\"10.1021/acs.nanolett.5c02441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmonic metal oxide nanocrystals can readily transduce infrared light into heat for applications in catalysis, therapeutics, and soft robotics. Here, we investigate photothermal pathways in oleate-capped tin-doped indium oxide (ITO) nanocrystals dispersed in toluene, mapping heat transfer dynamics from the ITO lattice to its surface and surrounding solvent. Using rhodamine B dyes adhered to nanocrystal surfaces and toluene as temperature probes, we track photothermal heat dissipation via transient absorption spectroscopy. We find heat transfer from ITO nanocrystals to surface-adsorbed molecules unfolds over tens of picoseconds, followed by heat dissipation into the surrounding solvent over hundreds of picoseconds. We have developed a theoretical model that quantitatively reproduces these kinetics and identifies nanocrystal surface-to-solvent heat transfer as the primary bottleneck in heat dissipation. These insights advance our understanding of nanoscale heat transport involving ITO nanocrystals and offer insights into how to design these materials for heat-driven applications.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c02441\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02441","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tracking Photothermal Heat Generation in ITO Nanocrystals and Its Dissipation to Their Surrounding Environment.
Plasmonic metal oxide nanocrystals can readily transduce infrared light into heat for applications in catalysis, therapeutics, and soft robotics. Here, we investigate photothermal pathways in oleate-capped tin-doped indium oxide (ITO) nanocrystals dispersed in toluene, mapping heat transfer dynamics from the ITO lattice to its surface and surrounding solvent. Using rhodamine B dyes adhered to nanocrystal surfaces and toluene as temperature probes, we track photothermal heat dissipation via transient absorption spectroscopy. We find heat transfer from ITO nanocrystals to surface-adsorbed molecules unfolds over tens of picoseconds, followed by heat dissipation into the surrounding solvent over hundreds of picoseconds. We have developed a theoretical model that quantitatively reproduces these kinetics and identifies nanocrystal surface-to-solvent heat transfer as the primary bottleneck in heat dissipation. These insights advance our understanding of nanoscale heat transport involving ITO nanocrystals and offer insights into how to design these materials for heat-driven applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.