Fan Feng , Zhidong Han , Yupei Li , Feizhou Wang , Changyu Liu , Qingwen Qu , Bing Wei , Qun Wang
{"title":"高性能SiC/CNT/RGO薄膜通过纳米焊接工程用于电磁屏蔽应用:制造和优化","authors":"Fan Feng , Zhidong Han , Yupei Li , Feizhou Wang , Changyu Liu , Qingwen Qu , Bing Wei , Qun Wang","doi":"10.1016/j.flatc.2025.100909","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid escalation of electromagnetic pollution has intensified the demand for flexible films demonstrating superior electromagnetic shielding effectiveness. In this study, self-supporting SiC/CNT/RGO films were fabricated using a filtration self-assembly method and subsequently high temperature treatment their and their electromagnetic shielding performance was systematically tuned by adjusting SiC content. The incorporation of carbon nanotubes (CNT) effectively bridges SiC and the graphene matrix, enabling the construction of a highly electron transport conductive network with multi-phase heterogeneous interfaces, thereby enhancing the electromagnetic shielding efficiency. The experimental results show that SiC/CNT/RGO film shows good flexibility and high electromagnetic shielding efficiency. When the addition of SiC is 8.0 %, the average electromagnetic shielding efficiency can reach 66.1 dB, and the conductivity is 14,070 S/m.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"53 ","pages":"Article 100909"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance SiC/CNT/RGO films through nanowelding engineering for electromagnetic shielding applications: Fabrication and optimization\",\"authors\":\"Fan Feng , Zhidong Han , Yupei Li , Feizhou Wang , Changyu Liu , Qingwen Qu , Bing Wei , Qun Wang\",\"doi\":\"10.1016/j.flatc.2025.100909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid escalation of electromagnetic pollution has intensified the demand for flexible films demonstrating superior electromagnetic shielding effectiveness. In this study, self-supporting SiC/CNT/RGO films were fabricated using a filtration self-assembly method and subsequently high temperature treatment their and their electromagnetic shielding performance was systematically tuned by adjusting SiC content. The incorporation of carbon nanotubes (CNT) effectively bridges SiC and the graphene matrix, enabling the construction of a highly electron transport conductive network with multi-phase heterogeneous interfaces, thereby enhancing the electromagnetic shielding efficiency. The experimental results show that SiC/CNT/RGO film shows good flexibility and high electromagnetic shielding efficiency. When the addition of SiC is 8.0 %, the average electromagnetic shielding efficiency can reach 66.1 dB, and the conductivity is 14,070 S/m.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"53 \",\"pages\":\"Article 100909\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725001035\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725001035","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-performance SiC/CNT/RGO films through nanowelding engineering for electromagnetic shielding applications: Fabrication and optimization
The rapid escalation of electromagnetic pollution has intensified the demand for flexible films demonstrating superior electromagnetic shielding effectiveness. In this study, self-supporting SiC/CNT/RGO films were fabricated using a filtration self-assembly method and subsequently high temperature treatment their and their electromagnetic shielding performance was systematically tuned by adjusting SiC content. The incorporation of carbon nanotubes (CNT) effectively bridges SiC and the graphene matrix, enabling the construction of a highly electron transport conductive network with multi-phase heterogeneous interfaces, thereby enhancing the electromagnetic shielding efficiency. The experimental results show that SiC/CNT/RGO film shows good flexibility and high electromagnetic shielding efficiency. When the addition of SiC is 8.0 %, the average electromagnetic shielding efficiency can reach 66.1 dB, and the conductivity is 14,070 S/m.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)