Nicolas F. Martins , José A. Laranjeira , Julio R. Sambrano
{"title":"ocd -石墨烯:一种具有高钠离子电池理论容量的二维碳同素异形体","authors":"Nicolas F. Martins , José A. Laranjeira , Julio R. Sambrano","doi":"10.1016/j.flatc.2025.100910","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of the newly designed octagonal-distorted two-dimensional (2D) material, named OCD-graphene, as an anode for sodium-ion batteries (SIBs) is systematically studied using density functional theory (DFT) simulations. The OCD-graphene monolayer exhibits robust dynamic and thermal stability, confirmed by phonon dispersion and ab initio molecular dynamics (AIMD) calculations. This structure shows a significant mechanical response, following the Born-Huang stability criteria. The single Na atom preferentially binds to the octagonal-distorted ring of OCD-graphene with an adsorption energy (<span><math><msub><mi>E</mi><mi>ads</mi></msub></math></span>) of −1.64 eV. Full sodiation results (24 Na atoms) yielding a remarkable capacity of 1339 mAh/g, superior to many traditional anode materials. The <span><math><msub><mi>E</mi><mi>ads</mi></msub></math></span> ranges from −1.49 eV to −0.58 eV, indicating favorable Na interaction with the sheet and suitable charge transfer. AIMD simulations confirm the stability of the system at 300 K. Additionally, Na mobility across OCD-graphene is facilitated by a low migration barrier of 0.12 eV and a high diffusion rate (D ≈ 9.72 × 10<sup>−3</sup>). The electrochemical stability of the Na electrode is verified within a suitable open circuit voltage range (1.49–0.40 V). These findings highlight the potential of OCD-graphene as a high-performance anode material for SIBs, paving the way for further research.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"53 ","pages":"Article 100910"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OCD-graphene: a 2D carbon allotrope with high theoretical capacity for sodium-ion batteries\",\"authors\":\"Nicolas F. Martins , José A. Laranjeira , Julio R. Sambrano\",\"doi\":\"10.1016/j.flatc.2025.100910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of the newly designed octagonal-distorted two-dimensional (2D) material, named OCD-graphene, as an anode for sodium-ion batteries (SIBs) is systematically studied using density functional theory (DFT) simulations. The OCD-graphene monolayer exhibits robust dynamic and thermal stability, confirmed by phonon dispersion and ab initio molecular dynamics (AIMD) calculations. This structure shows a significant mechanical response, following the Born-Huang stability criteria. The single Na atom preferentially binds to the octagonal-distorted ring of OCD-graphene with an adsorption energy (<span><math><msub><mi>E</mi><mi>ads</mi></msub></math></span>) of −1.64 eV. Full sodiation results (24 Na atoms) yielding a remarkable capacity of 1339 mAh/g, superior to many traditional anode materials. The <span><math><msub><mi>E</mi><mi>ads</mi></msub></math></span> ranges from −1.49 eV to −0.58 eV, indicating favorable Na interaction with the sheet and suitable charge transfer. AIMD simulations confirm the stability of the system at 300 K. Additionally, Na mobility across OCD-graphene is facilitated by a low migration barrier of 0.12 eV and a high diffusion rate (D ≈ 9.72 × 10<sup>−3</sup>). The electrochemical stability of the Na electrode is verified within a suitable open circuit voltage range (1.49–0.40 V). These findings highlight the potential of OCD-graphene as a high-performance anode material for SIBs, paving the way for further research.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"53 \",\"pages\":\"Article 100910\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725001047\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725001047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
OCD-graphene: a 2D carbon allotrope with high theoretical capacity for sodium-ion batteries
The performance of the newly designed octagonal-distorted two-dimensional (2D) material, named OCD-graphene, as an anode for sodium-ion batteries (SIBs) is systematically studied using density functional theory (DFT) simulations. The OCD-graphene monolayer exhibits robust dynamic and thermal stability, confirmed by phonon dispersion and ab initio molecular dynamics (AIMD) calculations. This structure shows a significant mechanical response, following the Born-Huang stability criteria. The single Na atom preferentially binds to the octagonal-distorted ring of OCD-graphene with an adsorption energy () of −1.64 eV. Full sodiation results (24 Na atoms) yielding a remarkable capacity of 1339 mAh/g, superior to many traditional anode materials. The ranges from −1.49 eV to −0.58 eV, indicating favorable Na interaction with the sheet and suitable charge transfer. AIMD simulations confirm the stability of the system at 300 K. Additionally, Na mobility across OCD-graphene is facilitated by a low migration barrier of 0.12 eV and a high diffusion rate (D ≈ 9.72 × 10−3). The electrochemical stability of the Na electrode is verified within a suitable open circuit voltage range (1.49–0.40 V). These findings highlight the potential of OCD-graphene as a high-performance anode material for SIBs, paving the way for further research.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)