ConvODE-Mixer:一个用于超短期光伏发电预测的多模态深度学习模型

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Binbin Yong , Yanxiang Zhang , Jun Shen , Aiai Ren , Xu Zhou , Qingguo Zhou
{"title":"ConvODE-Mixer:一个用于超短期光伏发电预测的多模态深度学习模型","authors":"Binbin Yong ,&nbsp;Yanxiang Zhang ,&nbsp;Jun Shen ,&nbsp;Aiai Ren ,&nbsp;Xu Zhou ,&nbsp;Qingguo Zhou","doi":"10.1016/j.solener.2025.113777","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy has emerged as a critical renewable resource for addressing global energy and environmental challenges. Owing to meteorological-induced stochastic fluctuations in photovoltaic (PV) generation, PV power forecasting still faces significant challenges, potentially causing grid instability events. This paper proposes a multimodal model, designated ConvODE-Mixer, integrating convolutional neural networks (CNNs) with neural ordinary differential equations (NODE) to improve the ultra-short-term PV power forecasting accuracy. By integrating ground-based cloud images (GBCI) and meteorological data, ConvODE-Mixer utilizes a multi-scale lite-reduced atrous spatial pyramid pooling (LR-ASPP) segmentation module to capture cloud thickness variations and a channel attention mechanism that dynamically weights light transmittance-sensitive features, thereby enhancing PV power forecasting precision. In the 10 min ahead forecasting task, ConvODE-Mixer exhibited statistically significant performance enhancements over MNF-ODEnet. Specifically, ConvODE-Mixer achieved a 40.45% reduction in mean square error (MSE), a 31.11% decrease in mean absolute error (MAE), a 4.66% improvement in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and a 41.17% reduction in relative absolute error (RAE). These results validate the model’s capacity to stabilize ultra-short-term grid operations by reducing prediction-to-actual deviations during rapid weather transitions, thereby enabling power dispatch systems to maintain supply–demand equilibrium with improved operational efficiency.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113777"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ConvODE-Mixer: A multimodal deep learning model for ultra-short-term PV power forecasting\",\"authors\":\"Binbin Yong ,&nbsp;Yanxiang Zhang ,&nbsp;Jun Shen ,&nbsp;Aiai Ren ,&nbsp;Xu Zhou ,&nbsp;Qingguo Zhou\",\"doi\":\"10.1016/j.solener.2025.113777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar energy has emerged as a critical renewable resource for addressing global energy and environmental challenges. Owing to meteorological-induced stochastic fluctuations in photovoltaic (PV) generation, PV power forecasting still faces significant challenges, potentially causing grid instability events. This paper proposes a multimodal model, designated ConvODE-Mixer, integrating convolutional neural networks (CNNs) with neural ordinary differential equations (NODE) to improve the ultra-short-term PV power forecasting accuracy. By integrating ground-based cloud images (GBCI) and meteorological data, ConvODE-Mixer utilizes a multi-scale lite-reduced atrous spatial pyramid pooling (LR-ASPP) segmentation module to capture cloud thickness variations and a channel attention mechanism that dynamically weights light transmittance-sensitive features, thereby enhancing PV power forecasting precision. In the 10 min ahead forecasting task, ConvODE-Mixer exhibited statistically significant performance enhancements over MNF-ODEnet. Specifically, ConvODE-Mixer achieved a 40.45% reduction in mean square error (MSE), a 31.11% decrease in mean absolute error (MAE), a 4.66% improvement in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and a 41.17% reduction in relative absolute error (RAE). These results validate the model’s capacity to stabilize ultra-short-term grid operations by reducing prediction-to-actual deviations during rapid weather transitions, thereby enabling power dispatch systems to maintain supply–demand equilibrium with improved operational efficiency.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"300 \",\"pages\":\"Article 113777\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25005407\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005407","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

太阳能已成为解决全球能源和环境挑战的关键可再生资源。由于光伏发电存在着由气象因素引起的随机波动,光伏发电功率预测仍面临着重大挑战,可能引发电网不稳定事件。本文提出了一种将卷积神经网络(cnn)与神经常微分方程(NODE)相结合的多模态ConvODE-Mixer模型,以提高超短期光伏发电功率预测的精度。ConvODE-Mixer通过整合地面云图(GBCI)和气象数据,利用多尺度减尺度空间金字塔池(LR-ASPP)分割模块捕捉云层厚度变化,并利用通道关注机制动态加权透光敏感特征,从而提高光伏发电功率预测精度。在提前10分钟预测任务中,ConvODE-Mixer比mif - odenet表现出统计学上显著的性能增强。具体来说,ConvODE-Mixer的均方误差(MSE)降低了40.45%,平均绝对误差(MAE)降低了31.11%,R2提高了4.66%,相对绝对误差(RAE)降低了41.17%。这些结果验证了该模型稳定超短期电网运行的能力,通过减少快速天气变化期间的预测与实际偏差,从而使电力调度系统能够在提高运行效率的同时保持供需平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ConvODE-Mixer: A multimodal deep learning model for ultra-short-term PV power forecasting
Solar energy has emerged as a critical renewable resource for addressing global energy and environmental challenges. Owing to meteorological-induced stochastic fluctuations in photovoltaic (PV) generation, PV power forecasting still faces significant challenges, potentially causing grid instability events. This paper proposes a multimodal model, designated ConvODE-Mixer, integrating convolutional neural networks (CNNs) with neural ordinary differential equations (NODE) to improve the ultra-short-term PV power forecasting accuracy. By integrating ground-based cloud images (GBCI) and meteorological data, ConvODE-Mixer utilizes a multi-scale lite-reduced atrous spatial pyramid pooling (LR-ASPP) segmentation module to capture cloud thickness variations and a channel attention mechanism that dynamically weights light transmittance-sensitive features, thereby enhancing PV power forecasting precision. In the 10 min ahead forecasting task, ConvODE-Mixer exhibited statistically significant performance enhancements over MNF-ODEnet. Specifically, ConvODE-Mixer achieved a 40.45% reduction in mean square error (MSE), a 31.11% decrease in mean absolute error (MAE), a 4.66% improvement in R2, and a 41.17% reduction in relative absolute error (RAE). These results validate the model’s capacity to stabilize ultra-short-term grid operations by reducing prediction-to-actual deviations during rapid weather transitions, thereby enabling power dispatch systems to maintain supply–demand equilibrium with improved operational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信