可解释的多准则决策:三向决策视角

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengjun Shi, Yiyu Yao
{"title":"可解释的多准则决策:三向决策视角","authors":"Chengjun Shi,&nbsp;Yiyu Yao","doi":"10.1016/j.ijar.2025.109528","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an Explainable Multi-Criteria Decision-Making (XMCDM) framework that constructs trilevel explanations with respect to classic multi-criteria decision-making methods. The framework consists of explainable data preparation, explainable decision analysis, and explainable decision support, which integrates ideas from three-way decision and symbols-meaning-value spaces. First, we briefly introduce the key concepts at each level and list potential issues to be resolved, including gathering multi-criteria data, interpreting multi-criteria decision-making working principles, and offering effective outcome presentation. We examine existing literature that solves part of those questions and point out that rule-based explanations may be applicable and efficient to explain ranking/ordering results. Then, we discuss two methods that generate three-way rankings with respect to an individual criterion and integrate three-way rankings with multi-criteria ranking. We modify the Iterative Dichotomiser 3 algorithm to build rule-based explanations. Finally, after giving a small illustrative example, we design experiments on five real-life datasets, test explainability of three classic multi-criteria decision-making methods, and tune the thresholds. The experimental results demonstrate that our proposed framework is feasible and adaptable to various data characteristics.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109528"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable multi-criteria decision-making: A three-way decision perspective\",\"authors\":\"Chengjun Shi,&nbsp;Yiyu Yao\",\"doi\":\"10.1016/j.ijar.2025.109528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes an Explainable Multi-Criteria Decision-Making (XMCDM) framework that constructs trilevel explanations with respect to classic multi-criteria decision-making methods. The framework consists of explainable data preparation, explainable decision analysis, and explainable decision support, which integrates ideas from three-way decision and symbols-meaning-value spaces. First, we briefly introduce the key concepts at each level and list potential issues to be resolved, including gathering multi-criteria data, interpreting multi-criteria decision-making working principles, and offering effective outcome presentation. We examine existing literature that solves part of those questions and point out that rule-based explanations may be applicable and efficient to explain ranking/ordering results. Then, we discuss two methods that generate three-way rankings with respect to an individual criterion and integrate three-way rankings with multi-criteria ranking. We modify the Iterative Dichotomiser 3 algorithm to build rule-based explanations. Finally, after giving a small illustrative example, we design experiments on five real-life datasets, test explainability of three classic multi-criteria decision-making methods, and tune the thresholds. The experimental results demonstrate that our proposed framework is feasible and adaptable to various data characteristics.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109528\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001690\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001690","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个可解释的多准则决策(XMCDM)框架,该框架针对经典的多准则决策方法构建了三级解释。该框架由可解释的数据准备、可解释的决策分析和可解释的决策支持组成,融合了三方决策和符号-意义-价值空间的思想。首先,我们简要介绍了每个级别的关键概念,并列出了需要解决的潜在问题,包括收集多标准数据,解释多标准决策工作原理,以及提供有效的结果展示。我们研究了解决这些问题的现有文献,并指出基于规则的解释可能适用且有效地解释排名/排序结果。然后,我们讨论了基于单个标准生成三向排名的两种方法,并将三向排名与多标准排名相结合。我们修改了迭代二分器3算法来构建基于规则的解释。最后,在给出一个小示例后,我们在五个实际数据集上设计了实验,测试了三种经典多准则决策方法的可解释性,并调整了阈值。实验结果表明,该框架是可行的,并能适应各种数据特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable multi-criteria decision-making: A three-way decision perspective
This paper proposes an Explainable Multi-Criteria Decision-Making (XMCDM) framework that constructs trilevel explanations with respect to classic multi-criteria decision-making methods. The framework consists of explainable data preparation, explainable decision analysis, and explainable decision support, which integrates ideas from three-way decision and symbols-meaning-value spaces. First, we briefly introduce the key concepts at each level and list potential issues to be resolved, including gathering multi-criteria data, interpreting multi-criteria decision-making working principles, and offering effective outcome presentation. We examine existing literature that solves part of those questions and point out that rule-based explanations may be applicable and efficient to explain ranking/ordering results. Then, we discuss two methods that generate three-way rankings with respect to an individual criterion and integrate three-way rankings with multi-criteria ranking. We modify the Iterative Dichotomiser 3 algorithm to build rule-based explanations. Finally, after giving a small illustrative example, we design experiments on five real-life datasets, test explainability of three classic multi-criteria decision-making methods, and tune the thresholds. The experimental results demonstrate that our proposed framework is feasible and adaptable to various data characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信