基于最大一致块的乐观和悲观概率粗糙模糊集及其在三向多属性决策中的应用

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yan Sun , Bin Pang , Ju-Sheng Mi , Wei-Zhi Wu
{"title":"基于最大一致块的乐观和悲观概率粗糙模糊集及其在三向多属性决策中的应用","authors":"Yan Sun ,&nbsp;Bin Pang ,&nbsp;Ju-Sheng Mi ,&nbsp;Wei-Zhi Wu","doi":"10.1016/j.ijar.2025.109529","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of three-way decision (3WD) into multiple attribute decision-making (MADM) problems has emerged as a pivotal research area. 3WD can effectively manage the inherent uncertainty within the decision-making process. Additionally, it offers a semantic interpretation of the outcomes. In this paper, we introduce two innovative 3WD-MADM approaches, with a focus on granule selection and the handling of multi-type information in the framework of three-way decisions. Firstly, we construct maximal consistent blocks (MCBs)-based pessimistic and optimistic probabilistic rough fuzzy set (RFS) models and investigate their properties to ascertain their efficacy and reliability in decision-making contexts. Then, we define relative loss functions associated with “good state” and “bad state” scenarios. Building on this, we introduce four types of 3WDs based on our newly proposed optimistic and pessimistic probabilistic RFSs. Furthermore, we integrate the 3WDs information from both scenarios to formulate optimistic and pessimistic 3WD-MADM approaches, handling both single-valued fuzzy and intuitionistic fuzzy information. Finally, we contrast our proposed methodologies with the current MADM methods, and demonstrate their validity, significance and generalization ability.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109529"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal consistent blocks-based optimistic and pessimistic probabilistic rough fuzzy sets and their applications in three-way multiple attribute decision-making\",\"authors\":\"Yan Sun ,&nbsp;Bin Pang ,&nbsp;Ju-Sheng Mi ,&nbsp;Wei-Zhi Wu\",\"doi\":\"10.1016/j.ijar.2025.109529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of three-way decision (3WD) into multiple attribute decision-making (MADM) problems has emerged as a pivotal research area. 3WD can effectively manage the inherent uncertainty within the decision-making process. Additionally, it offers a semantic interpretation of the outcomes. In this paper, we introduce two innovative 3WD-MADM approaches, with a focus on granule selection and the handling of multi-type information in the framework of three-way decisions. Firstly, we construct maximal consistent blocks (MCBs)-based pessimistic and optimistic probabilistic rough fuzzy set (RFS) models and investigate their properties to ascertain their efficacy and reliability in decision-making contexts. Then, we define relative loss functions associated with “good state” and “bad state” scenarios. Building on this, we introduce four types of 3WDs based on our newly proposed optimistic and pessimistic probabilistic RFSs. Furthermore, we integrate the 3WDs information from both scenarios to formulate optimistic and pessimistic 3WD-MADM approaches, handling both single-valued fuzzy and intuitionistic fuzzy information. Finally, we contrast our proposed methodologies with the current MADM methods, and demonstrate their validity, significance and generalization ability.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109529\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001707\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001707","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

将三向决策(three-way decision, 3WD)整合到多属性决策(MADM)问题中已经成为一个关键的研究领域。3WD可以有效管理决策过程中固有的不确定性。此外,它还提供了结果的语义解释。在本文中,我们介绍了两种创新的3WD-MADM方法,重点关注颗粒选择和在三方决策框架下多类型信息的处理。首先,构建了基于最大一致块(mcb)的悲观和乐观概率粗糙模糊集(RFS)模型,并研究了它们的性质,以确定它们在决策环境中的有效性和可靠性。然后,我们定义了与“好状态”和“坏状态”场景相关的相对损失函数。在此基础上,我们介绍了基于我们新提出的乐观和悲观概率rfs的四种类型的3wd。在此基础上,我们将两种场景下的3wd信息进行整合,形成乐观和悲观的3WD-MADM方法,分别处理单值模糊信息和直觉模糊信息。最后,我们将所提出的方法与现有的MADM方法进行了对比,验证了其有效性、显著性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal consistent blocks-based optimistic and pessimistic probabilistic rough fuzzy sets and their applications in three-way multiple attribute decision-making
The integration of three-way decision (3WD) into multiple attribute decision-making (MADM) problems has emerged as a pivotal research area. 3WD can effectively manage the inherent uncertainty within the decision-making process. Additionally, it offers a semantic interpretation of the outcomes. In this paper, we introduce two innovative 3WD-MADM approaches, with a focus on granule selection and the handling of multi-type information in the framework of three-way decisions. Firstly, we construct maximal consistent blocks (MCBs)-based pessimistic and optimistic probabilistic rough fuzzy set (RFS) models and investigate their properties to ascertain their efficacy and reliability in decision-making contexts. Then, we define relative loss functions associated with “good state” and “bad state” scenarios. Building on this, we introduce four types of 3WDs based on our newly proposed optimistic and pessimistic probabilistic RFSs. Furthermore, we integrate the 3WDs information from both scenarios to formulate optimistic and pessimistic 3WD-MADM approaches, handling both single-valued fuzzy and intuitionistic fuzzy information. Finally, we contrast our proposed methodologies with the current MADM methods, and demonstrate their validity, significance and generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信