Teresa Cardona-Cabrera , Javier Pineda-Pampliega , Sandra Martínez-Álvarez , Alberto Sánchez-Cano , Yolanda Muela-Trujillo , Marta Herrero-Villar , Rafael Mateo , Carmen Torres , Ursula Höfle
{"title":"食物来源和微量元素对白鹳雏鸟大肠埃希菌耐药性的影响","authors":"Teresa Cardona-Cabrera , Javier Pineda-Pampliega , Sandra Martínez-Álvarez , Alberto Sánchez-Cano , Yolanda Muela-Trujillo , Marta Herrero-Villar , Rafael Mateo , Carmen Torres , Ursula Höfle","doi":"10.1016/j.scitotenv.2025.180098","DOIUrl":null,"url":null,"abstract":"<div><div>Foraging in landfills enhances the probability of acquiring antimicrobial resistance (AMR) in wildlife and increases exposure to pollutants like metal(loid)s, pharmaceuticals and caffeine. Exposure to metal(loid)s in the environment may cause selective pressure on bacteria, inducing metal resistance genes that drive antimicrobial resistance genes (ARGs) through co-resistance and cross-resistance mechanisms. Hence, white storks fed in landfills could increase AMR acquisition through the combined effect of urban-waste and pollutants. Using a novel approach combining stable isotopes, trace elements and microbiological analysis, our study investigates the influence of the degree of anthropization of the diet and the presence of metal(loid)s in the occurrence of AMR/ARGs in <em>E. coli</em> in nestlings. Cloacal swabs, blood samples, and contour feathers were collected from 86 white stork nestlings from five breeding colonies. ARGs in <em>E. coli</em> were previously studied in cloacal swabs. Plasma was analysed for veterinary pharmaceuticals and caffeine and feathers for carbon/nitrogen isotope ratios and concentrations of metals and arsenic. Isotopic signature classified nestlings into natural or urban-waste diet, relating Al/Ni/Co/Cr/Pb and caffeine to urban-waste diet, while As/Hg/Cu/Zn were more related to natural diet. No pharmaceuticals were detected in the plasma of nestlings. The probability of acquisition of AMR and some ARGs (those conferring resistance to phenicols, tetracyclines and ampicillin) was higher in nestlings fed with urban-waste diet, but no effect of metal(loid) pollution was observed. This shows AMR in wildlife can occur even without direct contact with antibiotics, highlighting the complexity and challenges of addressing the threat of bacterial resistance in the environment.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"995 ","pages":"Article 180098"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of food sources and trace elements in the acquisition of antimicrobial resistance in Escherichia coli isolated from white stork nestlings (Ciconia ciconia)\",\"authors\":\"Teresa Cardona-Cabrera , Javier Pineda-Pampliega , Sandra Martínez-Álvarez , Alberto Sánchez-Cano , Yolanda Muela-Trujillo , Marta Herrero-Villar , Rafael Mateo , Carmen Torres , Ursula Höfle\",\"doi\":\"10.1016/j.scitotenv.2025.180098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Foraging in landfills enhances the probability of acquiring antimicrobial resistance (AMR) in wildlife and increases exposure to pollutants like metal(loid)s, pharmaceuticals and caffeine. Exposure to metal(loid)s in the environment may cause selective pressure on bacteria, inducing metal resistance genes that drive antimicrobial resistance genes (ARGs) through co-resistance and cross-resistance mechanisms. Hence, white storks fed in landfills could increase AMR acquisition through the combined effect of urban-waste and pollutants. Using a novel approach combining stable isotopes, trace elements and microbiological analysis, our study investigates the influence of the degree of anthropization of the diet and the presence of metal(loid)s in the occurrence of AMR/ARGs in <em>E. coli</em> in nestlings. Cloacal swabs, blood samples, and contour feathers were collected from 86 white stork nestlings from five breeding colonies. ARGs in <em>E. coli</em> were previously studied in cloacal swabs. Plasma was analysed for veterinary pharmaceuticals and caffeine and feathers for carbon/nitrogen isotope ratios and concentrations of metals and arsenic. Isotopic signature classified nestlings into natural or urban-waste diet, relating Al/Ni/Co/Cr/Pb and caffeine to urban-waste diet, while As/Hg/Cu/Zn were more related to natural diet. No pharmaceuticals were detected in the plasma of nestlings. The probability of acquisition of AMR and some ARGs (those conferring resistance to phenicols, tetracyclines and ampicillin) was higher in nestlings fed with urban-waste diet, but no effect of metal(loid) pollution was observed. This shows AMR in wildlife can occur even without direct contact with antibiotics, highlighting the complexity and challenges of addressing the threat of bacterial resistance in the environment.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"995 \",\"pages\":\"Article 180098\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725017383\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725017383","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Influence of food sources and trace elements in the acquisition of antimicrobial resistance in Escherichia coli isolated from white stork nestlings (Ciconia ciconia)
Foraging in landfills enhances the probability of acquiring antimicrobial resistance (AMR) in wildlife and increases exposure to pollutants like metal(loid)s, pharmaceuticals and caffeine. Exposure to metal(loid)s in the environment may cause selective pressure on bacteria, inducing metal resistance genes that drive antimicrobial resistance genes (ARGs) through co-resistance and cross-resistance mechanisms. Hence, white storks fed in landfills could increase AMR acquisition through the combined effect of urban-waste and pollutants. Using a novel approach combining stable isotopes, trace elements and microbiological analysis, our study investigates the influence of the degree of anthropization of the diet and the presence of metal(loid)s in the occurrence of AMR/ARGs in E. coli in nestlings. Cloacal swabs, blood samples, and contour feathers were collected from 86 white stork nestlings from five breeding colonies. ARGs in E. coli were previously studied in cloacal swabs. Plasma was analysed for veterinary pharmaceuticals and caffeine and feathers for carbon/nitrogen isotope ratios and concentrations of metals and arsenic. Isotopic signature classified nestlings into natural or urban-waste diet, relating Al/Ni/Co/Cr/Pb and caffeine to urban-waste diet, while As/Hg/Cu/Zn were more related to natural diet. No pharmaceuticals were detected in the plasma of nestlings. The probability of acquisition of AMR and some ARGs (those conferring resistance to phenicols, tetracyclines and ampicillin) was higher in nestlings fed with urban-waste diet, but no effect of metal(loid) pollution was observed. This shows AMR in wildlife can occur even without direct contact with antibiotics, highlighting the complexity and challenges of addressing the threat of bacterial resistance in the environment.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.