抛物型Lusztig变异体与色对称函数

IF 2.3 1区 数学 Q1 MATHEMATICS
Alex Abreu , Antonio Nigro
{"title":"抛物型Lusztig变异体与色对称函数","authors":"Alex Abreu ,&nbsp;Antonio Nigro","doi":"10.1016/j.matpur.2025.103771","DOIUrl":null,"url":null,"abstract":"<div><div>The characters of Kazhdan–Lusztig elements of the Hecke algebra over <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (and in particular, the chromatic symmetric function of indifference graphs) are completely encoded in the (intersection) cohomology of Lusztig varieties. Considering the forgetful map to some partial flag variety, the decomposition theorem tells us that this cohomology splits as a sum of intersection cohomology groups with coefficients in some local systems of subvarieties of the partial flag variety. We prove that these local systems correspond to representations of subgroups of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. An explicit characterization of such representations would provide a recursive formula for the computation of such characters/chromatic symmetric functions, which could settle Haiman's conjecture about the positivity of the monomial characters of Kazhdan–Lusztig elements and Stanley–Stembridge conjecture about <em>e</em>-positivity of chromatic symmetric function of indifference graphs. We also find a connection between the character of certain homology groups of subvarieties of the partial flag varieties and the Grojnowski–Haiman hybrid basis of the Hecke algebra.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103771"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic Lusztig varieties and chromatic symmetric functions\",\"authors\":\"Alex Abreu ,&nbsp;Antonio Nigro\",\"doi\":\"10.1016/j.matpur.2025.103771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The characters of Kazhdan–Lusztig elements of the Hecke algebra over <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (and in particular, the chromatic symmetric function of indifference graphs) are completely encoded in the (intersection) cohomology of Lusztig varieties. Considering the forgetful map to some partial flag variety, the decomposition theorem tells us that this cohomology splits as a sum of intersection cohomology groups with coefficients in some local systems of subvarieties of the partial flag variety. We prove that these local systems correspond to representations of subgroups of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. An explicit characterization of such representations would provide a recursive formula for the computation of such characters/chromatic symmetric functions, which could settle Haiman's conjecture about the positivity of the monomial characters of Kazhdan–Lusztig elements and Stanley–Stembridge conjecture about <em>e</em>-positivity of chromatic symmetric function of indifference graphs. We also find a connection between the character of certain homology groups of subvarieties of the partial flag varieties and the Grojnowski–Haiman hybrid basis of the Hecke algebra.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103771\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001151\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001151","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Sn上的Hecke代数的Kazhdan-Lusztig元的性质(特别是无差异图的色对称函数)完全编码在Lusztig变元的(交)上同调中。考虑到某些部分标志变体的遗忘映射,分解定理告诉我们,该上同调在部分标志变体的子变体的某些局部系统中分裂为带系数的交上同调群的和。我们证明了这些局部系统对应于Sn的子群的表示。对这类表征的明确刻画,将为这类特征/色对称函数的计算提供一个递推公式,从而解决Haiman关于Kazhdan-Lusztig元单项式特征的正性猜想和Stanley-Stembridge关于无差异图色对称函数e-正性的猜想。我们还发现了部分旗变体的某些子变体的同调群的性质与Hecke代数的Grojnowski-Haiman杂交基之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic Lusztig varieties and chromatic symmetric functions
The characters of Kazhdan–Lusztig elements of the Hecke algebra over Sn (and in particular, the chromatic symmetric function of indifference graphs) are completely encoded in the (intersection) cohomology of Lusztig varieties. Considering the forgetful map to some partial flag variety, the decomposition theorem tells us that this cohomology splits as a sum of intersection cohomology groups with coefficients in some local systems of subvarieties of the partial flag variety. We prove that these local systems correspond to representations of subgroups of Sn. An explicit characterization of such representations would provide a recursive formula for the computation of such characters/chromatic symmetric functions, which could settle Haiman's conjecture about the positivity of the monomial characters of Kazhdan–Lusztig elements and Stanley–Stembridge conjecture about e-positivity of chromatic symmetric function of indifference graphs. We also find a connection between the character of certain homology groups of subvarieties of the partial flag varieties and the Grojnowski–Haiman hybrid basis of the Hecke algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信