英格兰编码初级保健和相关医院活动数据中识别诊断为阻塞性睡眠呼吸暂停和发作性睡病的算法的验证

Helen Strongman , Sofia H. Eriksson , Kwabena Asare , Michelle A. Miller , Martina Sýkorová , Hema Mistry , Kristin Veighey , Charlotte Warren-Gash , Krishnan Bhaskaran
{"title":"英格兰编码初级保健和相关医院活动数据中识别诊断为阻塞性睡眠呼吸暂停和发作性睡病的算法的验证","authors":"Helen Strongman ,&nbsp;Sofia H. Eriksson ,&nbsp;Kwabena Asare ,&nbsp;Michelle A. Miller ,&nbsp;Martina Sýkorová ,&nbsp;Hema Mistry ,&nbsp;Kristin Veighey ,&nbsp;Charlotte Warren-Gash ,&nbsp;Krishnan Bhaskaran","doi":"10.1016/j.sleepe.2025.100110","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To assist sleep epidemiology research, we created and tested the accuracy of five algorithms identifying diagnosed Obstructive Sleep Apnoea (OSA) and narcolepsy in routinely collected data from England (01/01/1998–29/03/2021).</div></div><div><h3>Methods</h3><div>The primary algorithm identified the first coded record in Clinical Practice Research Datalink (CPRD) primary care or linked hospital admissions data as an incident diagnosis of OSA (<em>n</em> = 92,222) or narcolepsy (<em>n</em> = 1072). Alternative algorithms required codes in CPRD, both datasets, or an additional proximate possible-sleep-related outpatient visit or excessive daytime sleepiness drug prescription (narcolepsy only). Staff in 73/1574 CPRD practices completed online questionnaires for a convenience sample of 144 OSA and 101 narcolepsy cases. We estimated Positive Predictive Values (PPVs) describing the proportion of cases confirmed by a gold standard hospital specialist diagnosis, the percentage of gold standard cases from the primary algorithm retained with alternative algorithms, and time between specialist and recorded diagnosis dates.</div></div><div><h3>Results</h3><div>Using the primary algorithm, the PPV (95 % CI) was 75.3 % (69.2–81.3) and 65.2 % (57.0–73.4) for OSA and narcolepsy, respectively: 80.6 % and 62.7 % of confirmed cases were recorded within 6 months of the specialist diagnosis. The CPRD-only algorithm increased the PPV to 85.3 (77.3–91.4, OSA) and 71.0 (58.8–81.3, narcolepsy) and retained high proportions of gold standard cases. Requiring additional outpatient or prescribing data increased PPVs, and for OSA improved diagnostic date accuracy, but omitted a high proportion of gold standard cases.</div></div><div><h3>Conclusion</h3><div>Highly accurate OSA diagnoses can be identified in routinely collected data. Recorded cases of narcolepsy are moderately accurate, but diagnosis dates are not.</div></div>","PeriodicalId":74809,"journal":{"name":"Sleep epidemiology","volume":"5 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of algorithms identifying diagnosed obstructive sleep apnoea and narcolepsy in coded primary care and linked hospital activity data in England\",\"authors\":\"Helen Strongman ,&nbsp;Sofia H. Eriksson ,&nbsp;Kwabena Asare ,&nbsp;Michelle A. Miller ,&nbsp;Martina Sýkorová ,&nbsp;Hema Mistry ,&nbsp;Kristin Veighey ,&nbsp;Charlotte Warren-Gash ,&nbsp;Krishnan Bhaskaran\",\"doi\":\"10.1016/j.sleepe.2025.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To assist sleep epidemiology research, we created and tested the accuracy of five algorithms identifying diagnosed Obstructive Sleep Apnoea (OSA) and narcolepsy in routinely collected data from England (01/01/1998–29/03/2021).</div></div><div><h3>Methods</h3><div>The primary algorithm identified the first coded record in Clinical Practice Research Datalink (CPRD) primary care or linked hospital admissions data as an incident diagnosis of OSA (<em>n</em> = 92,222) or narcolepsy (<em>n</em> = 1072). Alternative algorithms required codes in CPRD, both datasets, or an additional proximate possible-sleep-related outpatient visit or excessive daytime sleepiness drug prescription (narcolepsy only). Staff in 73/1574 CPRD practices completed online questionnaires for a convenience sample of 144 OSA and 101 narcolepsy cases. We estimated Positive Predictive Values (PPVs) describing the proportion of cases confirmed by a gold standard hospital specialist diagnosis, the percentage of gold standard cases from the primary algorithm retained with alternative algorithms, and time between specialist and recorded diagnosis dates.</div></div><div><h3>Results</h3><div>Using the primary algorithm, the PPV (95 % CI) was 75.3 % (69.2–81.3) and 65.2 % (57.0–73.4) for OSA and narcolepsy, respectively: 80.6 % and 62.7 % of confirmed cases were recorded within 6 months of the specialist diagnosis. The CPRD-only algorithm increased the PPV to 85.3 (77.3–91.4, OSA) and 71.0 (58.8–81.3, narcolepsy) and retained high proportions of gold standard cases. Requiring additional outpatient or prescribing data increased PPVs, and for OSA improved diagnostic date accuracy, but omitted a high proportion of gold standard cases.</div></div><div><h3>Conclusion</h3><div>Highly accurate OSA diagnoses can be identified in routinely collected data. Recorded cases of narcolepsy are moderately accurate, but diagnosis dates are not.</div></div>\",\"PeriodicalId\":74809,\"journal\":{\"name\":\"Sleep epidemiology\",\"volume\":\"5 \",\"pages\":\"Article 100110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667343625000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667343625000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了协助睡眠流行病学研究,我们在英国(1998年1月1日- 2021年3月29日)的常规数据中创建并测试了五种识别诊断为阻塞性睡眠呼吸暂停(OSA)和发作性睡病的算法的准确性。方法主要算法将临床实践研究数据链(CPRD)初级保健或相关住院数据中的第一条编码记录识别为OSA (n = 92222)或发作性睡病(n = 1072)的偶发诊断。替代算法需要CPRD中的代码,两个数据集,或额外的可能与睡眠相关的门诊就诊或白天过量的嗜睡药物处方(仅限嗜睡症)。73/1574 CPRD诊所的工作人员完成了144例OSA和101例嗜睡症患者的在线问卷调查。我们估计了阳性预测值(Positive Predictive Values, ppv),该值描述了由金标准医院专家诊断确诊的病例比例、由替代算法保留的主要算法的金标准病例百分比,以及专家诊断日期与记录诊断日期之间的时间。结果采用主要算法,OSA和发作性睡病的PPV (95% CI)分别为75.3%(69.2 ~ 81.3)和65.2%(57.0 ~ 73.4),确诊病例在专科诊断后6个月内分别为80.6%和62.7%。仅cprd算法将PPV提高到85.3 (77.3-91.4,OSA)和71.0(58.8-81.3,发作性睡病),并保留了高比例的金标准病例。需要额外的门诊或处方数据增加了ppv,对于OSA提高了诊断日期的准确性,但遗漏了很大比例的金标准病例。结论通过常规采集的资料,可以对OSA进行高度准确的诊断。记录的发作性睡病病例是中等准确的,但诊断日期不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of algorithms identifying diagnosed obstructive sleep apnoea and narcolepsy in coded primary care and linked hospital activity data in England

Purpose

To assist sleep epidemiology research, we created and tested the accuracy of five algorithms identifying diagnosed Obstructive Sleep Apnoea (OSA) and narcolepsy in routinely collected data from England (01/01/1998–29/03/2021).

Methods

The primary algorithm identified the first coded record in Clinical Practice Research Datalink (CPRD) primary care or linked hospital admissions data as an incident diagnosis of OSA (n = 92,222) or narcolepsy (n = 1072). Alternative algorithms required codes in CPRD, both datasets, or an additional proximate possible-sleep-related outpatient visit or excessive daytime sleepiness drug prescription (narcolepsy only). Staff in 73/1574 CPRD practices completed online questionnaires for a convenience sample of 144 OSA and 101 narcolepsy cases. We estimated Positive Predictive Values (PPVs) describing the proportion of cases confirmed by a gold standard hospital specialist diagnosis, the percentage of gold standard cases from the primary algorithm retained with alternative algorithms, and time between specialist and recorded diagnosis dates.

Results

Using the primary algorithm, the PPV (95 % CI) was 75.3 % (69.2–81.3) and 65.2 % (57.0–73.4) for OSA and narcolepsy, respectively: 80.6 % and 62.7 % of confirmed cases were recorded within 6 months of the specialist diagnosis. The CPRD-only algorithm increased the PPV to 85.3 (77.3–91.4, OSA) and 71.0 (58.8–81.3, narcolepsy) and retained high proportions of gold standard cases. Requiring additional outpatient or prescribing data increased PPVs, and for OSA improved diagnostic date accuracy, but omitted a high proportion of gold standard cases.

Conclusion

Highly accurate OSA diagnoses can be identified in routinely collected data. Recorded cases of narcolepsy are moderately accurate, but diagnosis dates are not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sleep epidemiology
Sleep epidemiology Dentistry, Oral Surgery and Medicine, Clinical Neurology, Pulmonary and Respiratory Medicine
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信