基于土地利用模式比对项目模型的毁林对中国极端降水的影响

IF 3.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Tianliang Gao , Yue Sui , Bo Liu , Yuxuan Peng , Wenxuan Qiao
{"title":"基于土地利用模式比对项目模型的毁林对中国极端降水的影响","authors":"Tianliang Gao ,&nbsp;Yue Sui ,&nbsp;Bo Liu ,&nbsp;Yuxuan Peng ,&nbsp;Wenxuan Qiao","doi":"10.1016/j.aosl.2024.100584","DOIUrl":null,"url":null,"abstract":"<div><div>Deforestation has a significant influence on the hydrological cycle. Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges. This study investigates the impact of deforestation on precipitation extremes (R95p index, which represents the total amount of precipitation exceeding the 95th percentile of the reference period) in China, using outputs from three earth system models (CanESM5, IPSL-CM6A-LR, and MIROC-ES2L). All models, along with their multimodel mean, indicate a general decrease in R95p in Northeast China and southern China, and changes in Northwest China and the Tibetan Plateau are minimal. In contrast, the responses are model-dependent in the Huanghuai and Jianghuai regions. The overall nationwide multimodel mean suggests an annual R95p decrease of 10.7 mm, with individual model variations ranging from −28.0 to 2.0 mm. Further analysis using precipitation extremes scaling reveals a high spatial correlation with direct precipitation extremes changes on both annual and seasonal scales, albeit with slightly smaller magnitudes. Decomposing the response into dynamic and thermodynamic scaling, the authors find that dynamic contributions predominantly drive the changes in precipitation extremes on both annual and seasonal scales. The authors findings highlight the substantial role of dynamic processes in modulating the response of precipitation extremes to deforestation in China.</div><div>摘要</div><div>森林砍伐对水循环影响显著, 理解森林砍伐对极端降水的影响对于应对全球环境挑战至关重要.基 于CanESM5, IPSL-CM6A-LR和MIROC-ES2L三个地球系统模式, 本文探讨了森林砍伐对中国极端降水 (R95p指数, 即超过参考期第95百分位降水量总和) 的影响. 所有模式及其集合平均表明, 森林砍伐后我国东北和南方R95p普遍减少; 西北和青藏高原的变化较小; 而黄淮和江淮地区的响应则依赖于模式. 进一步, 在年和季节尺度上, 极端降水物理尺度诊断方法得到的极端降水响应与上述响应具有高空间相似性, 且动力作用主导了森林砍伐对极端降水的影响.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 5","pages":"Article 100584"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of deforestation on precipitation extremes in China based on land use model intercomparison project models\",\"authors\":\"Tianliang Gao ,&nbsp;Yue Sui ,&nbsp;Bo Liu ,&nbsp;Yuxuan Peng ,&nbsp;Wenxuan Qiao\",\"doi\":\"10.1016/j.aosl.2024.100584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deforestation has a significant influence on the hydrological cycle. Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges. This study investigates the impact of deforestation on precipitation extremes (R95p index, which represents the total amount of precipitation exceeding the 95th percentile of the reference period) in China, using outputs from three earth system models (CanESM5, IPSL-CM6A-LR, and MIROC-ES2L). All models, along with their multimodel mean, indicate a general decrease in R95p in Northeast China and southern China, and changes in Northwest China and the Tibetan Plateau are minimal. In contrast, the responses are model-dependent in the Huanghuai and Jianghuai regions. The overall nationwide multimodel mean suggests an annual R95p decrease of 10.7 mm, with individual model variations ranging from −28.0 to 2.0 mm. Further analysis using precipitation extremes scaling reveals a high spatial correlation with direct precipitation extremes changes on both annual and seasonal scales, albeit with slightly smaller magnitudes. Decomposing the response into dynamic and thermodynamic scaling, the authors find that dynamic contributions predominantly drive the changes in precipitation extremes on both annual and seasonal scales. The authors findings highlight the substantial role of dynamic processes in modulating the response of precipitation extremes to deforestation in China.</div><div>摘要</div><div>森林砍伐对水循环影响显著, 理解森林砍伐对极端降水的影响对于应对全球环境挑战至关重要.基 于CanESM5, IPSL-CM6A-LR和MIROC-ES2L三个地球系统模式, 本文探讨了森林砍伐对中国极端降水 (R95p指数, 即超过参考期第95百分位降水量总和) 的影响. 所有模式及其集合平均表明, 森林砍伐后我国东北和南方R95p普遍减少; 西北和青藏高原的变化较小; 而黄淮和江淮地区的响应则依赖于模式. 进一步, 在年和季节尺度上, 极端降水物理尺度诊断方法得到的极端降水响应与上述响应具有高空间相似性, 且动力作用主导了森林砍伐对极端降水的影响.</div></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"18 5\",\"pages\":\"Article 100584\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283424001363\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424001363","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

森林砍伐对水文循环有重大影响。了解森林砍伐对极端降水的影响对于应对全球环境挑战至关重要。利用CanESM5、IPSL-CM6A-LR和microc - es2l三个地球系统模型的输出,研究了森林砍伐对中国降水极值(R95p指数,代表参考期超过95百分位的降水总量)的影响。所有模式及其多模式平均值均显示东北和华南地区R95p总体下降,西北和青藏高原变化最小。相反,黄淮和江淮地区的响应是模式依赖的。总体上,全国多模式平均值表明R95p年下降10.7毫米,单个模式变化范围为- 28.0至2.0毫米。利用降水极值尺度进一步分析表明,在年和季节尺度上,降水极值变化与直接降水极值变化具有高度的空间相关性,尽管幅度略小。将响应分解为动力尺度和热力学尺度,作者发现在年和季节尺度上,动力贡献主要驱动极端降水的变化。作者的发现强调了动态过程在调节中国极端降水对森林砍伐的响应中所起的重要作用。摘要森林砍伐对水循环影响显著, 理解森林砍伐对极端降水的影响对于应对全球环境挑战至关重要.基于CanESM5, IPSL-CM6A-LR和MIROC-ES2L三个地球系统模式,本文探讨了森林砍伐对中国极端降水(R95p指数,即超过参考期第95年百分位降水量总和)的影响。【参考翻译】:http://www.chinesechina.com西北和青藏高原的变化较小; 而黄淮和江淮地区的响应则依赖于模式. 进一步, 在年和季节尺度上, 极端降水物理尺度诊断方法得到的极端降水响应与上述响应具有高空间相似性, 且动力作用主导了森林砍伐对极端降水的影响.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of deforestation on precipitation extremes in China based on land use model intercomparison project models
Deforestation has a significant influence on the hydrological cycle. Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges. This study investigates the impact of deforestation on precipitation extremes (R95p index, which represents the total amount of precipitation exceeding the 95th percentile of the reference period) in China, using outputs from three earth system models (CanESM5, IPSL-CM6A-LR, and MIROC-ES2L). All models, along with their multimodel mean, indicate a general decrease in R95p in Northeast China and southern China, and changes in Northwest China and the Tibetan Plateau are minimal. In contrast, the responses are model-dependent in the Huanghuai and Jianghuai regions. The overall nationwide multimodel mean suggests an annual R95p decrease of 10.7 mm, with individual model variations ranging from −28.0 to 2.0 mm. Further analysis using precipitation extremes scaling reveals a high spatial correlation with direct precipitation extremes changes on both annual and seasonal scales, albeit with slightly smaller magnitudes. Decomposing the response into dynamic and thermodynamic scaling, the authors find that dynamic contributions predominantly drive the changes in precipitation extremes on both annual and seasonal scales. The authors findings highlight the substantial role of dynamic processes in modulating the response of precipitation extremes to deforestation in China.
摘要
森林砍伐对水循环影响显著, 理解森林砍伐对极端降水的影响对于应对全球环境挑战至关重要.基 于CanESM5, IPSL-CM6A-LR和MIROC-ES2L三个地球系统模式, 本文探讨了森林砍伐对中国极端降水 (R95p指数, 即超过参考期第95百分位降水量总和) 的影响. 所有模式及其集合平均表明, 森林砍伐后我国东北和南方R95p普遍减少; 西北和青藏高原的变化较小; 而黄淮和江淮地区的响应则依赖于模式. 进一步, 在年和季节尺度上, 极端降水物理尺度诊断方法得到的极端降水响应与上述响应具有高空间相似性, 且动力作用主导了森林砍伐对极端降水的影响.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信