插入超薄PMMA中间层的高效稳定溅射niox基倒置钙钛矿太阳能电池

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Dexu Zheng , Jianming Yang , Sajian Wu , Feng Pan
{"title":"插入超薄PMMA中间层的高效稳定溅射niox基倒置钙钛矿太阳能电池","authors":"Dexu Zheng ,&nbsp;Jianming Yang ,&nbsp;Sajian Wu ,&nbsp;Feng Pan","doi":"10.1016/j.solmat.2025.113858","DOIUrl":null,"url":null,"abstract":"<div><div>Inverted p-i-n perovskite solar cells based on a NiO<sub>x</sub> hole transport layer (HTL) are promising for large-scale panel production; however, interface-related energy losses and instability have limited their performance. In this study, we introduce an ultrathin insulating polymethyl methacrylate (PMMA) interlayer at the buried interface between the NiO<sub>x</sub> HTL and the perovskite absorber. This interfacial modification effectively suppresses charge recombination, optimizes energetic alignments, and improves interfacial contact. Under AM 1.5G illumination, the PMMA-modified devices achieve a power conversion efficiency (PCE) of 22.22% and an open-circuit voltage (Voc) of 1.11 V. Furthermore, unencapsulated cells retain 95% of their initial performance after 1000 h, demonstrating enhanced stability. In addition, a 14-cm<sup>2</sup> perovskite solar module fabricated using a scalable slot-die coating method to deposit the PMMA layer delivers a PCE of 19.19%. These findings highlight the effectiveness of interface engineering via ultrathin PMMA layers in enhancing both the performance and stability of NiO<sub>x</sub> -based PSCs, paving the way for their application in mass-produced perovskite solar panels.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"293 ","pages":"Article 113858"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and stable sputtered NiOx-Based inverted perovskite solar cells by inserting ultrathin PMMA interlayers\",\"authors\":\"Dexu Zheng ,&nbsp;Jianming Yang ,&nbsp;Sajian Wu ,&nbsp;Feng Pan\",\"doi\":\"10.1016/j.solmat.2025.113858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inverted p-i-n perovskite solar cells based on a NiO<sub>x</sub> hole transport layer (HTL) are promising for large-scale panel production; however, interface-related energy losses and instability have limited their performance. In this study, we introduce an ultrathin insulating polymethyl methacrylate (PMMA) interlayer at the buried interface between the NiO<sub>x</sub> HTL and the perovskite absorber. This interfacial modification effectively suppresses charge recombination, optimizes energetic alignments, and improves interfacial contact. Under AM 1.5G illumination, the PMMA-modified devices achieve a power conversion efficiency (PCE) of 22.22% and an open-circuit voltage (Voc) of 1.11 V. Furthermore, unencapsulated cells retain 95% of their initial performance after 1000 h, demonstrating enhanced stability. In addition, a 14-cm<sup>2</sup> perovskite solar module fabricated using a scalable slot-die coating method to deposit the PMMA layer delivers a PCE of 19.19%. These findings highlight the effectiveness of interface engineering via ultrathin PMMA layers in enhancing both the performance and stability of NiO<sub>x</sub> -based PSCs, paving the way for their application in mass-produced perovskite solar panels.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"293 \",\"pages\":\"Article 113858\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825004593\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004593","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于NiOx空穴传输层(HTL)的倒p-i-n钙钛矿太阳能电池有望大规模生产电池板;然而,与界面相关的能量损失和不稳定性限制了它们的性能。在这项研究中,我们在NiOx HTL和钙钛矿吸收剂之间的埋藏界面上引入了超薄绝缘聚甲基丙烯酸甲酯(PMMA)中间层。这种界面修饰有效地抑制了电荷复合,优化了能量排列,改善了界面接触。在AM 1.5G照明下,pmma修饰器件的功率转换效率(PCE)为22.22%,开路电压(Voc)为1.11 V。此外,未封装的电池在1000小时后仍能保持95%的初始性能,显示出更高的稳定性。此外,采用可扩展槽模涂层方法沉积PMMA层的14cm2钙钛矿太阳能组件的PCE为19.19%。这些发现强调了通过超薄PMMA层进行界面工程在提高NiOx基PSCs的性能和稳定性方面的有效性,为其在大规模生产的钙钛矿太阳能电池板中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and stable sputtered NiOx-Based inverted perovskite solar cells by inserting ultrathin PMMA interlayers
Inverted p-i-n perovskite solar cells based on a NiOx hole transport layer (HTL) are promising for large-scale panel production; however, interface-related energy losses and instability have limited their performance. In this study, we introduce an ultrathin insulating polymethyl methacrylate (PMMA) interlayer at the buried interface between the NiOx HTL and the perovskite absorber. This interfacial modification effectively suppresses charge recombination, optimizes energetic alignments, and improves interfacial contact. Under AM 1.5G illumination, the PMMA-modified devices achieve a power conversion efficiency (PCE) of 22.22% and an open-circuit voltage (Voc) of 1.11 V. Furthermore, unencapsulated cells retain 95% of their initial performance after 1000 h, demonstrating enhanced stability. In addition, a 14-cm2 perovskite solar module fabricated using a scalable slot-die coating method to deposit the PMMA layer delivers a PCE of 19.19%. These findings highlight the effectiveness of interface engineering via ultrathin PMMA layers in enhancing both the performance and stability of NiOx -based PSCs, paving the way for their application in mass-produced perovskite solar panels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信