Andrew V. Bradley, David J. Large, Jeffrey Mauricio Prieto Naranjo, Wouter Buytaert, Emily Mitchell, Andrew Sowter, Mauricio Diazgranados, Boris Ochoa-Tocachi, Charles George, France F. Gerard
{"title":"利用APSIS-InSAR数据评估哥伦比亚山区土壤水分储存和释放Páramo","authors":"Andrew V. Bradley, David J. Large, Jeffrey Mauricio Prieto Naranjo, Wouter Buytaert, Emily Mitchell, Andrew Sowter, Mauricio Diazgranados, Boris Ochoa-Tocachi, Charles George, France F. Gerard","doi":"10.1002/hyp.70214","DOIUrl":null,"url":null,"abstract":"<p>Direct observation of montane and upland water resources provides valuable data in support of national scale water management and policy, but direct observation is challenging on large spatial scales. To address the need for large spatial scale hydrological data we use InSAR surface motion signals, indicative of surface swelling due to increased soil water content, at approximately 90 m resolution over a tropical Colombian mountain range covered with Páramo, a biome widespread along the Northern Andes. Considering uncertainty of vegetation and mountainous terrain on the InSAR signal, we observe a regional, spatially consistent sequence of soil surface motion, which can be related to storage and movement of water through montane catchments. Swelling on the ridges and upper slopes occurs during the wet season and is consistent with infiltration and increased saturation of ridge and upper slope soils. This is followed by a marked swelling of the valley floors towards the end of the wet season and into the dry season. The InSAR signal also captures movement of water through the basin with swelling subsiding sequentially downslope and downstream. The results indicate that a shallow hillslope flow dominates during the wet season, but this alone is insufficient to explain shallow ground water storage in superficial valley deposits lasting into the late wet season and dry season. We conclude that InSAR signals can provide a qualitative insight in the storage and release mechanisms at a basin scale, thus complementing sparse point-scale measurements.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70214","citationCount":"0","resultStr":"{\"title\":\"Assessing Mountain Soil Water Storage and Release in a Colombian Páramo With APSIS-InSAR Data\",\"authors\":\"Andrew V. Bradley, David J. Large, Jeffrey Mauricio Prieto Naranjo, Wouter Buytaert, Emily Mitchell, Andrew Sowter, Mauricio Diazgranados, Boris Ochoa-Tocachi, Charles George, France F. Gerard\",\"doi\":\"10.1002/hyp.70214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct observation of montane and upland water resources provides valuable data in support of national scale water management and policy, but direct observation is challenging on large spatial scales. To address the need for large spatial scale hydrological data we use InSAR surface motion signals, indicative of surface swelling due to increased soil water content, at approximately 90 m resolution over a tropical Colombian mountain range covered with Páramo, a biome widespread along the Northern Andes. Considering uncertainty of vegetation and mountainous terrain on the InSAR signal, we observe a regional, spatially consistent sequence of soil surface motion, which can be related to storage and movement of water through montane catchments. Swelling on the ridges and upper slopes occurs during the wet season and is consistent with infiltration and increased saturation of ridge and upper slope soils. This is followed by a marked swelling of the valley floors towards the end of the wet season and into the dry season. The InSAR signal also captures movement of water through the basin with swelling subsiding sequentially downslope and downstream. The results indicate that a shallow hillslope flow dominates during the wet season, but this alone is insufficient to explain shallow ground water storage in superficial valley deposits lasting into the late wet season and dry season. We conclude that InSAR signals can provide a qualitative insight in the storage and release mechanisms at a basin scale, thus complementing sparse point-scale measurements.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"39 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70214\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70214","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Assessing Mountain Soil Water Storage and Release in a Colombian Páramo With APSIS-InSAR Data
Direct observation of montane and upland water resources provides valuable data in support of national scale water management and policy, but direct observation is challenging on large spatial scales. To address the need for large spatial scale hydrological data we use InSAR surface motion signals, indicative of surface swelling due to increased soil water content, at approximately 90 m resolution over a tropical Colombian mountain range covered with Páramo, a biome widespread along the Northern Andes. Considering uncertainty of vegetation and mountainous terrain on the InSAR signal, we observe a regional, spatially consistent sequence of soil surface motion, which can be related to storage and movement of water through montane catchments. Swelling on the ridges and upper slopes occurs during the wet season and is consistent with infiltration and increased saturation of ridge and upper slope soils. This is followed by a marked swelling of the valley floors towards the end of the wet season and into the dry season. The InSAR signal also captures movement of water through the basin with swelling subsiding sequentially downslope and downstream. The results indicate that a shallow hillslope flow dominates during the wet season, but this alone is insufficient to explain shallow ground water storage in superficial valley deposits lasting into the late wet season and dry season. We conclude that InSAR signals can provide a qualitative insight in the storage and release mechanisms at a basin scale, thus complementing sparse point-scale measurements.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.