Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig
{"title":"利用超网络学习未知环境下基于mpc的局部轨迹规划的最大安全集","authors":"Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig","doi":"10.1109/LRA.2025.3589151","DOIUrl":null,"url":null,"abstract":"This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8842-8849"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Maximal Safe Sets Using Hypernetworks for MPC-Based Local Trajectory Planning in Unknown Environments\",\"authors\":\"Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig\",\"doi\":\"10.1109/LRA.2025.3589151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8842-8849\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11079966/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11079966/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Learning Maximal Safe Sets Using Hypernetworks for MPC-Based Local Trajectory Planning in Unknown Environments
This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.