利用超网络学习未知环境下基于mpc的局部轨迹规划的最大安全集

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig
{"title":"利用超网络学习未知环境下基于mpc的局部轨迹规划的最大安全集","authors":"Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig","doi":"10.1109/LRA.2025.3589151","DOIUrl":null,"url":null,"abstract":"This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8842-8849"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Maximal Safe Sets Using Hypernetworks for MPC-Based Local Trajectory Planning in Unknown Environments\",\"authors\":\"Bojan Derajić;Mohamed-Khalil Bouzidi;Sebastian Bernhard;Wolfgang Hönig\",\"doi\":\"10.1109/LRA.2025.3589151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8842-8849\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11079966/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11079966/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于学习的未知静态环境下局部轨迹规划最大安全集在线估计方法。将集合的神经表示作为模型预测控制(MPC)局部规划器的终端集约束,提高了递归的可行性和安全性。为了实现实时性能和期望的泛化特性,我们采用了超网络的思想。在训练过程中,我们使用Hamilton-Jacobi (HJ)可达性分析作为监督的来源,允许我们考虑一般的非线性动力学和任意约束。在不同环境和机器人动力学的仿真中,对所提出的方法进行了广泛的基线评估。结果显示,与最佳基线相比,成功率提高了52%,同时保持了相当的执行速度。此外,我们在物理机器人上部署了我们提出的方法NTC-MPC,并展示了它在基线失效的情况下安全避开障碍物的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Maximal Safe Sets Using Hypernetworks for MPC-Based Local Trajectory Planning in Unknown Environments
This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信