使护理可见:使用生成式预训练变压器模型和检索增强生成过程的人工智能辅助电子健康记录干预措施的标准化

IF 3.7 2区 医学 Q1 NURSING
Tamara G.R. Macieira PhD, RN , Ragnhildur I. Bjarnadottir PhD, MPH, RN , Patricia de Oliveira Salgado PhD, MS, RN , Aseem Baranwal MS , Alexander Semenov PhD , Karen B. Priola MSCIS , Priscilla Pestana BSN , Soluchukwu Okafor BSN , Nathan Mena MSN, RN , Noelle Montoya RN , Laura Sargent RN , Ashley Presley RN , Yingwei Yao PhD , Gail M. Keenan PhD, RN, FAAN
{"title":"使护理可见:使用生成式预训练变压器模型和检索增强生成过程的人工智能辅助电子健康记录干预措施的标准化","authors":"Tamara G.R. Macieira PhD, RN ,&nbsp;Ragnhildur I. Bjarnadottir PhD, MPH, RN ,&nbsp;Patricia de Oliveira Salgado PhD, MS, RN ,&nbsp;Aseem Baranwal MS ,&nbsp;Alexander Semenov PhD ,&nbsp;Karen B. Priola MSCIS ,&nbsp;Priscilla Pestana BSN ,&nbsp;Soluchukwu Okafor BSN ,&nbsp;Nathan Mena MSN, RN ,&nbsp;Noelle Montoya RN ,&nbsp;Laura Sargent RN ,&nbsp;Ashley Presley RN ,&nbsp;Yingwei Yao PhD ,&nbsp;Gail M. Keenan PhD, RN, FAAN","doi":"10.1016/j.outlook.2025.102494","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Nurses provide essential care that significantly impacts patient outcomes. However, nursing care is rarely examined due to a lack of standardized nurse-generated data suitable for large-scale analysis.</div></div><div><h3>Purpose</h3><div>To test the performance of retrieval-augmented generation (RAG) and generative pre-trained transformer (GPT) models in standardizing electronic health records nursing intervention terms.</div></div><div><h3>Methods</h3><div>The process involved: (a) manually mapping a subset of local terms to standardized terms to create a “gold standard” for comparison, (b) implementing and assessing the RAG pipeline with GPT models for standardization, and (c) incorporating the output into an AI-assisted manual mapping workflow.</div></div><div><h3>Discussion</h3><div>GPT models were comparable to human mappers but lacked sufficient accuracy for fully automated mapping.</div></div><div><h3>Conclusion</h3><div>Although GPT models are not yet reliable for full automation, they can reduce human workload and streamline the standardization process. This advancement represents an important step toward making nursing contributions visible through data-driven evaluation of nursing practices.</div></div>","PeriodicalId":54705,"journal":{"name":"Nursing Outlook","volume":"73 5","pages":"Article 102494"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making nursing visible: AI-assisted standardization of electronic health record interventions using generative pre-trained transformer models and retrieval-augmented generation process\",\"authors\":\"Tamara G.R. Macieira PhD, RN ,&nbsp;Ragnhildur I. Bjarnadottir PhD, MPH, RN ,&nbsp;Patricia de Oliveira Salgado PhD, MS, RN ,&nbsp;Aseem Baranwal MS ,&nbsp;Alexander Semenov PhD ,&nbsp;Karen B. Priola MSCIS ,&nbsp;Priscilla Pestana BSN ,&nbsp;Soluchukwu Okafor BSN ,&nbsp;Nathan Mena MSN, RN ,&nbsp;Noelle Montoya RN ,&nbsp;Laura Sargent RN ,&nbsp;Ashley Presley RN ,&nbsp;Yingwei Yao PhD ,&nbsp;Gail M. Keenan PhD, RN, FAAN\",\"doi\":\"10.1016/j.outlook.2025.102494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Nurses provide essential care that significantly impacts patient outcomes. However, nursing care is rarely examined due to a lack of standardized nurse-generated data suitable for large-scale analysis.</div></div><div><h3>Purpose</h3><div>To test the performance of retrieval-augmented generation (RAG) and generative pre-trained transformer (GPT) models in standardizing electronic health records nursing intervention terms.</div></div><div><h3>Methods</h3><div>The process involved: (a) manually mapping a subset of local terms to standardized terms to create a “gold standard” for comparison, (b) implementing and assessing the RAG pipeline with GPT models for standardization, and (c) incorporating the output into an AI-assisted manual mapping workflow.</div></div><div><h3>Discussion</h3><div>GPT models were comparable to human mappers but lacked sufficient accuracy for fully automated mapping.</div></div><div><h3>Conclusion</h3><div>Although GPT models are not yet reliable for full automation, they can reduce human workload and streamline the standardization process. This advancement represents an important step toward making nursing contributions visible through data-driven evaluation of nursing practices.</div></div>\",\"PeriodicalId\":54705,\"journal\":{\"name\":\"Nursing Outlook\",\"volume\":\"73 5\",\"pages\":\"Article 102494\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nursing Outlook\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029655425001472\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NURSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nursing Outlook","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029655425001472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0

摘要

护士提供的基本护理对患者的预后有重大影响。然而,由于缺乏适合大规模分析的标准化护士生成数据,护理很少被检查。目的探讨检索增强生成(RAG)和生成预训练变形(GPT)模型在电子病历护理干预术语规范化中的应用效果。该过程包括:(a)手动将局部术语子集映射到标准化术语,以创建用于比较的“黄金标准”,(b)使用GPT模型实施和评估RAG管道以实现标准化,以及(c)将输出纳入人工智能辅助的手动映射工作流。pt模型与人类制图者相当,但缺乏足够的精度来实现全自动制图。结论虽然GPT模型还不能完全自动化,但它可以减少人工工作量,简化标准化流程。这一进步代表了通过数据驱动的护理实践评估使护理贡献可见的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making nursing visible: AI-assisted standardization of electronic health record interventions using generative pre-trained transformer models and retrieval-augmented generation process

Background

Nurses provide essential care that significantly impacts patient outcomes. However, nursing care is rarely examined due to a lack of standardized nurse-generated data suitable for large-scale analysis.

Purpose

To test the performance of retrieval-augmented generation (RAG) and generative pre-trained transformer (GPT) models in standardizing electronic health records nursing intervention terms.

Methods

The process involved: (a) manually mapping a subset of local terms to standardized terms to create a “gold standard” for comparison, (b) implementing and assessing the RAG pipeline with GPT models for standardization, and (c) incorporating the output into an AI-assisted manual mapping workflow.

Discussion

GPT models were comparable to human mappers but lacked sufficient accuracy for fully automated mapping.

Conclusion

Although GPT models are not yet reliable for full automation, they can reduce human workload and streamline the standardization process. This advancement represents an important step toward making nursing contributions visible through data-driven evaluation of nursing practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nursing Outlook
Nursing Outlook 医学-护理
CiteScore
6.20
自引率
7.00%
发文量
109
审稿时长
25 days
期刊介绍: Nursing Outlook, a bimonthly journal, provides innovative ideas for nursing leaders through peer-reviewed articles and timely reports. Each issue examines current issues and trends in nursing practice, education, and research, offering progressive solutions to the challenges facing the profession. Nursing Outlook is the official journal of the American Academy of Nursing and the Council for the Advancement of Nursing Science and supports their mission to serve the public and the nursing profession by advancing health policy and practice through the generation, synthesis, and dissemination of nursing knowledge. The journal is included in MEDLINE, CINAHL and the Journal Citation Reports published by Clarivate Analytics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信