S.D. Nandakumar , M. Lakshmanan , V.S. Divya Sundar
{"title":"基于能量感知路由混合优化的自组织无线网络流量增强多目标函数","authors":"S.D. Nandakumar , M. Lakshmanan , V.S. Divya Sundar","doi":"10.1016/j.suscom.2025.101165","DOIUrl":null,"url":null,"abstract":"<div><div>Wireless Adhoc Networks (WANET) undergoes different dynamic environments and have different topologies throughout communication. Routing schemes have enlightened Adhoc communication through a selection of proper paths and increased the efficiency of the communication. With energy-aware routing, the routing path concentrates on establishing the path considering the energy factors of the node and aims to prolong the network lifetime. The shared network bandwidth creates a lot of bottleneck problems and increases the network traffic. Hence, it is necessary to implement an energy-aware routing model in consideration of improved network traffic. Therefore, an effective energy-efficient optimal routing task is implemented to improve the traffic capacity of the Adhoc wireless network. Initially, from the available resources, the necessary data attributes are gathered. Further, the energy-aware optimal routing process is carried out in the Adhoc wireless network by employing Fusion of Snow Leopard Optimization with Lotus Effect Optimization Algorithm (FSLOLEO). Here, the multi-objective functions including residual energy, congestion, link stability, routing overhead, and route quality are considered by the same FSLOLEO for route creation. With the support of this energy-aware optimal routing process, the traffic capacity and lifespan of the network are improved and also the energy consumption is set to be minimized. At last, a detailed performance validation is performed for the designed process by comparing it with the traditional algorithms to prove the designed energy-aware optimal routing mechanism’s efficacy. Here, the developed method achieves a better throughput value of 97 % to prove its optimal energy-aware routing performance in wireless Adhoc networks.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101165"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective function derived for traffic capacity enhancement using hybrid optimization of energy-aware routing in ad hoc wireless network\",\"authors\":\"S.D. Nandakumar , M. Lakshmanan , V.S. Divya Sundar\",\"doi\":\"10.1016/j.suscom.2025.101165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wireless Adhoc Networks (WANET) undergoes different dynamic environments and have different topologies throughout communication. Routing schemes have enlightened Adhoc communication through a selection of proper paths and increased the efficiency of the communication. With energy-aware routing, the routing path concentrates on establishing the path considering the energy factors of the node and aims to prolong the network lifetime. The shared network bandwidth creates a lot of bottleneck problems and increases the network traffic. Hence, it is necessary to implement an energy-aware routing model in consideration of improved network traffic. Therefore, an effective energy-efficient optimal routing task is implemented to improve the traffic capacity of the Adhoc wireless network. Initially, from the available resources, the necessary data attributes are gathered. Further, the energy-aware optimal routing process is carried out in the Adhoc wireless network by employing Fusion of Snow Leopard Optimization with Lotus Effect Optimization Algorithm (FSLOLEO). Here, the multi-objective functions including residual energy, congestion, link stability, routing overhead, and route quality are considered by the same FSLOLEO for route creation. With the support of this energy-aware optimal routing process, the traffic capacity and lifespan of the network are improved and also the energy consumption is set to be minimized. At last, a detailed performance validation is performed for the designed process by comparing it with the traditional algorithms to prove the designed energy-aware optimal routing mechanism’s efficacy. Here, the developed method achieves a better throughput value of 97 % to prove its optimal energy-aware routing performance in wireless Adhoc networks.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"47 \",\"pages\":\"Article 101165\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000861\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000861","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A multi-objective function derived for traffic capacity enhancement using hybrid optimization of energy-aware routing in ad hoc wireless network
Wireless Adhoc Networks (WANET) undergoes different dynamic environments and have different topologies throughout communication. Routing schemes have enlightened Adhoc communication through a selection of proper paths and increased the efficiency of the communication. With energy-aware routing, the routing path concentrates on establishing the path considering the energy factors of the node and aims to prolong the network lifetime. The shared network bandwidth creates a lot of bottleneck problems and increases the network traffic. Hence, it is necessary to implement an energy-aware routing model in consideration of improved network traffic. Therefore, an effective energy-efficient optimal routing task is implemented to improve the traffic capacity of the Adhoc wireless network. Initially, from the available resources, the necessary data attributes are gathered. Further, the energy-aware optimal routing process is carried out in the Adhoc wireless network by employing Fusion of Snow Leopard Optimization with Lotus Effect Optimization Algorithm (FSLOLEO). Here, the multi-objective functions including residual energy, congestion, link stability, routing overhead, and route quality are considered by the same FSLOLEO for route creation. With the support of this energy-aware optimal routing process, the traffic capacity and lifespan of the network are improved and also the energy consumption is set to be minimized. At last, a detailed performance validation is performed for the designed process by comparing it with the traditional algorithms to prove the designed energy-aware optimal routing mechanism’s efficacy. Here, the developed method achieves a better throughput value of 97 % to prove its optimal energy-aware routing performance in wireless Adhoc networks.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.